An Intact Spleen Is Required for Alloimmunization to Transfused Red Blood Cells Due to Intrasplenic Activation of CD4+ T Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 453-453
Author(s):  
Jeanne E. Hendrickson ◽  
John D. Roback ◽  
Christopher D. Hillyer ◽  
James C. Zimring

Background: Factors influencing rates of alloimmunization to antigens on transfused red blood cells (RBC alloimmunization) are poorly defined. In particular, the role of the spleen with respect to alloantibody formation is unclear, with conflicting clinical reports in the literature. Moreover, the complexities of multiply mismatched antigens and antigen priming due to transfusions prior to splenectomy make human studies difficult to interpret. To better define the role of the spleen in RBC alloimmunization, we utilized a murine model of transfusion medicine (with the model RBC antigen mHEL (membrane bound hen egg lysozyme)). Methods: Cohorts of splenectomized and non-splenectomized mice (C57BL/6 × B10.BR) were transfused with the human dose equivalent of 1 unit of leukoreduced mHEL RBCs. RBC alloimmunization was assessed by anti-HEL IgG specific ELISA. The role of antigen-specific CD4+ T cells was studied by the adoptive transfer of 1.5 × 106 HEL-specific CFSE-labeled CD4+ T cells from 3A9 TCR transgenic donors. Adoptively transferred cells were visualized using a congenic marker (Thy1.1); enumeration and division of these cells were monitored by flow cytometry in liver, spleen (if applicable), and lymph node preparations. Results: Splenectomy dramatically decreased RBC alloimmunization; 14 of 14 splenectomized mice (from 3 experiments) had undetectable to very low levels of anti-HEL IgG following transfusion with mHEL RBCs (average 6.3 fold less than non-splenectomized mice, 95% C.I. 4.6). Moreover, ten of ten splenectomized mice failed to make detectable levels of anti-HEL IgG even following the adoptive transfer of HEL-specific CD4+ T cells. In comparison, elevating the precursor frequency of HEL-specific CD4+ T cells increased RBC alloimmunization by 10,000 fold in non-splenectomized mice. Proliferation and division of CD4+ T cells were detectable in both spleen and liver preparations of non-splenectomized mice by day 3 following transfusion; in contrast, no expansion nor division of CD4+ T cells was seen in liver nor lymphatic preparations of splenectomized animals. Conclusions: The low level of RBC alloimmunization seen in non-splenectomized mice in this system is limited by existing CD4+ helper T cell responses, as increasing the naive helper T cell precursor frequency dramatically increased RBC alloimmunization. Furthermore, the spleen itself is critical to CD4+ helper T cell function during alloimmunization given that, in splenectomized mice, adoptively transferred HEL-specific CD4+ T cells fail to expand, divide, or stimulate production of detectable alloantibody. Ongoing studies are investigating the phenotype of HEL-specific CD4+ T cells (as effector cells, anergic cells, or regulatory cells) in splenectomized and non-splenectomized mice. These studies have implications for preventing alloimmunization in transfusion-dependent patient populations.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4113-4113
Author(s):  
Stephanie C. Eisenbarth ◽  
Jeanne E Hendrickson ◽  
Samuele Calabro ◽  
Antonia Gallman

Abstract The generation of antibodies against transfused red blood cells (RBCs) can pose a serious health risk, especially in chronically transfused patients requiring life-long transfusion support; yet our understanding of what immune signals or cells dictate when someone will become alloimmunized is lacking. Every non-autologous red cell unit has multiple antigens foreign to the transfused recipient; some people respond to these foreign antigens with an adaptive immune response and some do not. Given the now well established role of innate immune signals in regulating adaptive immunity, understanding if and how innate immunity is triggered during transfusion may allow development of therapies to prevent alloimmunization in chronically transfused subjects such as those with myelodysplasia or hemoglobinopathies. We have established a murine model system in which we can evaluate both the role of particular innate immune stimuli as well as particular cells of the immune system in regulating the allogeneic response to transfused red blood cells. A particularly useful transgenic “HOD mouse” has been engineered, which encodes a triple fusion protein and provides a unique tool to directly assess both RBC-specific T and B cell responses. This RBC-specific antigen contains the model protein antigen hen egg lysozyme (HEL) fused to chicken ovalbumin (OVA) fused to the human Duffybblood group antigen (HEL-OVA-Duffy) as an integral membrane protein under control of the beta globin promoter. Transfusion of genetically targeted mice lacking various innate immune receptors allows us to screen for important immune pathways regulating the response to allogeneic RBCs. Using these models, we recently discovered that mice lacking the NOD-like receptor NLRP10 fail to develop alloimmunity to transfused red blood cells. Surprisingly, the early innate immune cytokine response, including IL-6, IL-1beta and TNF-alpha, was unaffected in mice lacking NLRP10. Yet both B cell and T cell activation in the spleen to the transgenic transfused RBCs was abrogated. Inclusion of OVA in the alloantigen of the HOD mice allows us to readily study naïve CD4+ T cell activation following transfusion by using the OTII T cell receptor (TCR) transgenic mice in which essentially all T cells express one antigen receptor specific for a peptide of OVA. By tracking rounds of cell division we found that adoptively transferred OTII undergo more than 5-8 rounds of division in the spleen three days following transfusion of HOD RBCs in WT recipients. In contrast, no OTII proliferation was observed in NLRP10-deficient mice following OTII adoptive transfer and HOD RBC transfusion, suggesting that T cells are failing to receive activation signals by splenic antigen presenting cells. We have previously demonstrated that NLRP10-deficient dendritic cells fail to migrate from peripheral tissues such as the skin to draining lymph nodes. Our preliminary data now suggest that NLRP10-deficient dendritic cells are able to process and present RBC-derived antigens, but do not migrate to T cell zones in the spleen to prime naïve RBC-specific T cells. The relative role of dendritic cells, B cells and macrophages in the induction of erythrocyte alloimmunization remain unclear. Further, the need for DC migration within the spleen in the induction of alloimmunity to transfused RBCs has not been addressed. These mice allow us for the first time to answer these fundamental immunologic questions during transfusion. Future work will aim to determine how dendritic cell movement within the spleen is regulated during transfusion in NLRP10-deficient mice and the specific role of splenic dendritic cells in CD4+ T cell priming to allogeneic RBCs. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (5) ◽  
pp. 2713
Author(s):  
Sun-Hye Shin ◽  
Kyung-Ah Cho ◽  
Hee-Soo Yoon ◽  
So-Yeon Kim ◽  
Hee-Yeon Kim ◽  
...  

(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


2020 ◽  
Vol 4 (17) ◽  
pp. 4069-4082
Author(s):  
Joji Nagasaki ◽  
Yosuke Togashi ◽  
Takeaki Sugawara ◽  
Makiko Itami ◽  
Nobuhiko Yamauchi ◽  
...  

Abstract Classic Hodgkin lymphoma (cHL) responds markedly to PD-1 blockade therapy, and the clinical responses are reportedly dependent on expression of major histocompatibility complex class II (MHC-II). This dependence is different from other solid tumors, in which the MHC class I (MHC-I)/CD8+ T-cell axis plays a critical role. In this study, we investigated the role of the MHC-II/CD4+ T-cell axis in the antitumor effect of PD-1 blockade on cHL. In cHL, MHC-I expression was frequently lost, but MHC-II expression was maintained. CD4+ T cells highly infiltrated the tumor microenvironment of MHC-II–expressing cHL, regardless of MHC-I expression status. Consequently, CD4+ T-cell, but not CD8+ T-cell, infiltration was a good prognostic factor in cHL, and PD-1 blockade showed antitumor efficacy against MHC-II–expressing cHL associated with CD4+ T-cell infiltration. Murine lymphoma and solid tumor models revealed the critical role of antitumor effects mediated by CD4+ T cells: an anti-PD-1 monoclonal antibody exerted antitumor effects on MHC-I−MHC-II+ tumors but not on MHC-I−MHC-II− tumors, in a cytotoxic CD4+ T-cell–dependent manner. Furthermore, LAG-3, which reportedly binds to MHC-II, was highly expressed by tumor-infiltrating CD4+ T cells in MHC-II–expressing tumors. Therefore, the combination of LAG-3 blockade with PD-1 blockade showed a far stronger antitumor immunity compared with either treatment alone. We propose that PD-1 blockade therapies have antitumor effects on MHC-II–expressing tumors such as cHL that are mediated by cytotoxic CD4+ T cells and that LAG-3 could be a candidate for combination therapy with PD-1 blockade.


1989 ◽  
Vol 170 (3) ◽  
pp. 1045-1050 ◽  
Author(s):  
J A Richt ◽  
L Stitz ◽  
H Wekerle ◽  
R Rott

A homogeneous T cell line NM1 with Borna disease (BD) virus reactivity could be established. The NM1 cells have been characterized as CD4+ T cells. Adoptive transfer revealed that this MHC class II-restricted immune cell is responsible for the immunopathological effect leading to BD, a progressive meningoencephalomyelitis.


2004 ◽  
Vol 200 (10) ◽  
pp. 1279-1288 ◽  
Author(s):  
Jean-François Arrighi ◽  
Marjorie Pion ◽  
Eduardo Garcia ◽  
Jean-Michel Escola ◽  
Yvette van Kooyk ◽  
...  

Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC–T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient. Here, we have investigated the role of DC-SIGN on primary DCs in X4 HIV-1 capture and transmission using small interfering RNA–expressing lentiviral vectors to specifically knockdown DC-SIGN. We demonstrate that DC-SIGN− DCs internalize X4 HIV-1 as well as DC-SIGN+ DCs, although binding of virions is reduced. Strikingly, DC-SIGN knockdown in DCs selectively impairs infectious synapse formation between DCs and resting CD4+ T cells, but does not prevent the formation of DC–T cells conjugates. Our results demonstrate that DC-SIGN is required downstream from viral capture for the formation of the infectious synapse between DCs and T cells. These findings provide a novel explanation for the role of DC-SIGN in the transfer and enhancement of HIV infection from DCs to T cells, a crucial step for HIV transmission and pathogenesis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 588-588
Author(s):  
Karrune Woan ◽  
Fengdong Cheng ◽  
Hongwei Wang ◽  
Jennifer Rock-Klotz ◽  
Zi Wang ◽  
...  

Abstract Abstract 588 We recently defined a novel role of histone deacetylase 11 (HDAC11), the newest member of the HDAC family, as a negative regulator of IL-10 gene transcription in antigen-presenting cells (APCs).1 To better understand the role of HDAC11 gene expression in immune cells in vivo, we have utilized a BAC (Bacterial artificial chromosome) transgenic mouse in which the EGFP reporter gene was inserted downstream of the HDAC11 promoter region but immediately upstream of the HDAC11 coding sequence (TgHDAC11-EGFP mice).2 In the steady-state, macrophages and B-cells isolated from spleen of TgHDAC11-EGFP mice express low levels of HDAC11 as evidenced by a slight shift in EGFP fluorescence from background. In sharp contrast, we identified a discrete population (11.9%) of T-cells over-expressing HDAC11 as demonstrated both by flow cytometry for EGFP and by qRT-PCR for HDAC11, a majority of which were CD4+ T-cells. Sorting of this EGFP+, CD4+ T-cell population confirmed that the increased EGFP expression correlated with an increased HDAC11mRNA expression. Reminiscent of our prior data in APCs, the increased expression of HDAC11 in T-cells was also inversely correlated with IL-10mRNA expression. Further analyses revealed that in the absence of any stimulation or T-cell polarizing conditions, this EGFP positive population expressed significantly elevated levels of ROR-γt and IL-17 mRNA, markers specific for the TH17 subpopulation. Polarization of wild type CD4+ T-cells into functional TH17 cells was associated with reduction of HDAC11 expression, suggesting a potential role for HDAC11 in regulating T-cell function and/or activation, in particular within the TH17 subset. Further support for this regulatory role of HDAC11 has been provided by our additional findings that T-cells devoid of HDAC11 are indeed hyper-reactive in vitro and in in vivo models. 1. Villagra A, et al. Nat Immunol. 2009 Jan;10(1):92-100. 2. Gong S, et al. Nature. 2003 Oct 30;425(6961):917-25. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 338-338
Author(s):  
Motoko Koyama ◽  
Rachel D Kuns ◽  
Stuart D Olver ◽  
Katie E Lineburg ◽  
Mary Lor ◽  
...  

Abstract Abstract 338 Graft-versus-host disease (GVHD) is the major limitation of allogeneic hematopoietic bone marrow transplantation (BMT). Donor T cells play pivotal roles in GVHD and graft-versus-leukemia (GVL) effects and following BMT all T cell fractions, including regulatory T cells (Treg) express the DNAX accessory molecule-1 (DNAM-1, CD226) and T cell Immunoglobulin and ITIM domain (TIGIT) molecule. DNAM-1 is a co-stimulatory and adhesion molecule, expressed mainly by NK cells and CD8+ T cells at steady state to promote adhesion to ligand (CD155, CD112)–expressing targets and enhance cytolysis. TIGIT is a regulatory ligand expressed predominantly by Treg as steady state which competes for CD155 binding, We have analyzed the role of this pathway in GVHD and GVL. Lethally irradiated C3H/Hej (H-2k) mice were injected with bone marrow cells and T cells from MHC disparate wild-type (wt) or DNAM-1–/– C57Bl6 (H-2b) mice. Recipients of DNAM-1–/– grafts were protected from GVHD (survival 67% vs. 7%, P < .0001). We also confirmed the role of DNAM-1 in GVHD in a MHC-matched BMT model (B6 → BALB/B (H-2b)) where GVHD is directed to multiple minor histocompatibility antigens. Next we examined the donor populations expressing DNAM-1 which mediate this effect. DNAM-1 had little impact on acute GVHD severity in the B6 → bm1 BMT model where GVHD is directed against an isolated MHC class I mismatch and is CD8-dependent. In contrast, recipients of wt bone marrow and DNAM-1–/– CD4 T cells survived long-term (compared to recipients of wt CD4 T cells, survival 81% vs. 25%, P = .003) in the B6 → B6C3F1 BMT model, confirming the protection from GVHD is CD4-dependent. Donor CD4 T cell expansion and effector function (Th1 and Th17), and CD8 T cell expansion and cytotoxic function were equivalent in recipients of wt and DNAM-1–/– grafts. However the percentage and number of Treg were significantly increased in recipients of DNAM-1–/– grafts compared to those of wt grafts. The depletion of Treg from donor grafts eliminated the protection from GVHD seen in the absence of DNAM-1 signalling (median survival 16 days vs. 15.5 days, P = 0.53). Adoptive transfer experiments using FACS-sorted Treg were undertaken to compare the relative ability of B6.WT and B6.DNAM-1–/– Treg to suppress GVHD. The majority of recipients of DNAM-1–/– Treg survived beyond day 50 (median survival; day 56), demonstrating a superior ability to suppress acute GVHD relative to wt Treg where the median survival was day 36 (survival 47% vs. 0%, P = .001). These data demonstrate that donor DNAM-1 expression promotes GVHD in a CD4+ T cell-dependent manner via the inhibition of donor Foxp3+ Treg. Finally, the absence of donor DNAM-1 did not influence leukemia-specific mortality in multiple GVL models, regardless of whether the tumor expressed CD155 or not. Thus we demonstrate that the DNAM-1 pathway promotes GVHD, putatively due to competition with TIGIT on Treg, thereby inhibiting regulatory function. This provides support for therapeutic DNAM-1 inhibition to promote tolerance not only after transplant but also in relevant inflammatory based diseases characterized by T cell activation. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 197 (7) ◽  
pp. 861-874 ◽  
Author(s):  
Ye Zheng ◽  
Monika Vig ◽  
Jesse Lyons ◽  
Luk Van Parijs ◽  
Amer A. Beg

Signaling pathways involved in regulating T cell proliferation and survival are not well understood. Here we have investigated a possible role of the nuclear factor (NF)-κB pathway in regulating mature T cell function by using CD4+ T cells from p50−/− cRel−/− mice, which exhibit virtually no inducible κB site binding activity. Studies with these mice indicate an essential role of T cell receptor (TCR)-induced NF-κB in regulating interleukin (IL)-2 expression, cell cycle entry, and survival of T cells. Our results further indicate that NF-κB regulates TCR-induced expression of antiapoptotic Bcl-2 family members. Strikingly, retroviral transduction of CD4+ T cells with the NF-κB–inducing IκB kinase β showed that NF-κB activation is not only necessary but also sufficient for T cell survival. In contrast, our results indicate a lack of involvement of NF-κB in both IL-2 and Akt-induced survival pathways. In vivo, p50−/− cRel−/− mice showed impaired superantigen-induced T cell responses as well as decreased numbers of effector/memory and regulatory CD4+ T cells. These findings provide the first demonstration of a role for NF-κB proteins in regulating T cell function in vivo and establish a critically important function of NF-κB in TCR-induced regulation of survival.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1218-1221 ◽  
Author(s):  
JiangFang Wang ◽  
Susanne Marschner ◽  
Terri H. Finkel

Abstract The chemokine receptor, CXCR4, serves as the primary coreceptor for entry of T-cell tropic human immunodeficiency virus (HIV). Binding of either the CXC-chemokine, stromal-derived factor 1α (SDF-1α), or a CXCR4 antagonist, AMD3100, to CXCR4 inhibits infection of CD4+ T cells by T-tropic HIV-1, although only SDF-1α triggers T-cell signaling cascades. We have previously demonstrated that ligation of CD4 by T-cell tropic HIV-1 NL4-3 induces metalloproteinase-dependent L-selectin (CD62L) shedding on resting CD4+ T cells. However, the role of CXCR4 in HIV-induced L-selectin shedding is unclear. Here, we show that L-selectin shedding induced by HIV-1 NL4-3 is completely reversed by AMD3100, but not SDF-1α, although SDF-1α alone does not induce L-selectin shedding. These results indicate that engagement of both CD4 and CXCR4 is required for HIV-induced shedding of L-selectin on primary resting CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document