In Vivo Injection of Synthetic Small Interfering RNA to Lethally Irradiated Mouse as a New Model to Study Apoptotic Pathways.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1336-1336 ◽  
Author(s):  
Michel Drouet ◽  
Philippe Garrigou ◽  
Jean-François Mayol ◽  
Christophe Delaunay ◽  
Andre Peinnequin ◽  
...  

Abstract The Fas/Fas-ligand system is a well known component of the extrinsic apoptotic pathway. Using a short term culture assay we have established that CD34+ hematopoietic stem and progenitor cells express Fas antigen within 10 hours following irradiation. Using the terminaldeoxynucleotidyl transferase test, we have also established that this expression was linked with apoptosis since only the Fas/Fas-ligand positive cells exhibited a high level of DNA fragmentation (Drouet et al, Stem cell 1999). However Fas is also involved in the CD34+ cells differentiation process as described in ex vivo expansion studies. Caspases are other important actors of radiation induced (RI) apoptosis process and our team has recently identified caspases one and six as key actors in RI apoptosis in CD34+ cells. The goal of the present study was to evaluate short term synthetic small interfering RNA (siRNA) as new tools to in vivo modulate apoptosis in order to allow pathophysiological studies at the hematopoietic niche level. Briefly, B6D2F1 mice were globally irradiated (9 Gy gamma, LD90% 30 days) and then injected at 2 hours following irradiation with siRNA (0.5 nmol/mice, Dharmacon). To ensure a proper delivery to the niche cell components, siRNA were intra-tibially injected under a volume of 30μl. The duration of gene inhibition is about 10 days long. Control mice were injected with non relevant mock siRNA (n=80). Treated animals were injected with Fas-siRNA (n=20) or Fas + a pool of siRNA against caspases 1+ 3 + 6 + 8)(n=20). All mice were given ciprofloxacin during a week and no early lethality was observed. The lethality curves show that animals treated with Fas-siRNA exhibited an accelerated death rate when compared with siRNA mice. These results are compatible with a janus model for Fas expression depending on the time following irradiation: initial proapoptotic role, then requirement for cell expansion. Globally this study suggests the feasibility of using synthetic siRNA in vivo to screen the role of apoptosis actors.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2324-2324
Author(s):  
Juan Xiao ◽  
Bing Han ◽  
Wanling Sun ◽  
Yuping Zhong ◽  
Yongji Wu

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder characterized by intravascular hemolysis, venous thrombosis, and bone marrow (BM) failure. Until now, allogeneic hematopoietic stem cell transplantation is still the only way to cure PNH. Eculizumab, although very promising, is not the eradication of the disease because of raising the possibility of severe intravascular hemolysis if therapy is interrupted. Here we enriched the residual bone marrow normal progenitor cells (marked by CD34+CD59+) from PNH patients, tried to find an effective way of expanding the progenitors cells used for autologous bone marrow transplantation (ABMT). Objective To expand CD34+CD59+ cells isolated from patients with PNH and observe the long-term hemaotopoietic reconstruction ability of the expanded cells both ex vivo and in vivo. Methods CD34+CD59+ cells from 13 patients with PNH and CD34+ cells from 11 normal controls were separated from the bone marrow monouclear cells first by immunomagnetic microbead and then by flow cytometry autoclone sorting. The selected cells were then cultivated under different conditions for two weeks to find out the optimal expansion factors. The long-term hematopoietic supporting ability of expanded CD34+CD59+ cells was evaluated by long-term culture in semi-solid medium in vitro and long-term engraftment in irradiated severe combined immunodeficiency(SCID) mice in vivo. Results The best combination of hematopoietic growth factors for ex vivo expansion was SCF+IL-3+IL-6+FL+Tpo+Epo, and the most suitable time for harvest was on day 7. Although the CD34+CD59+ PNH cells had impaired ex vivo increase compared with normal CD34+ cells (the biggest expansion was 23.49±3.52 fold in CD34+CD59+ PNH cells and 38.82±4.32 fold in CD34+ normal cells, P<0.01 ), they remained strong colony-forming capacity even after expansion ( no difference was noticed in CFCs or LTC-IC of PNH CD34+CD59+ cells before and after expansion, P>0.05). According to the above data, 11/13(84.3%) patients with PNH can get enough CD34+CD59+cells for ABMT after expansion. The survival rate and human CD45 expression in different organs was similar between the irradiated SCID mice transplanted with expanded CD34+CD59+ PNH cells and those with normal CD34+ cells (P>0.05). The peripheral blood cell count recovered on day 90 in mice transplanted with PNH cells, which was compatible with those transplanted with normal cells (P>0.05). On secondary transplantation, the peripheral blood cell count returned to almost normal on day 30 in mice transplanted with either PNH cells or normal cells. Lower CD45 percentage was found in secondary transplantation compared with primary transplantation but no difference between mice transplanted with different cells. Conclusion Isolated CD34+CD59+ cells from patients with PNH can be effectively expanded ex vivo and can support lasting hematopoiesis both ex vivo and in vivo. These data provide a new potential way of managing PNH with ABMT.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 242-242
Author(s):  
Jennifer E Adair ◽  
Lauren E Schefter ◽  
Daniel R Humphrys ◽  
Kevin G Haworth ◽  
Jonah D Hocum ◽  
...  

Abstract Long-term clonal tracking studies utilizing hematopoietic stem and progenitor cells (HSPCs) in nonhuman primates receiving myeloablative transplantation demonstrate a successive pattern of repopulation: short-term repopulating cells are succeeded by long-term clones. However, the duration of short-term repopulation and the numbers of clones contributing to either short or long-term repopulation are unclear. Here, we tracked >11,000 unique clones in 8 pigtail macaques for up to 9 years following myeloablative transplantation with autologous, lentivirus gene-modified CD34+ HSPCs. Seven of these animals received cells expressing the P140K mutant methylguanine methyltransferase transgene, which is resistant to the combination of O6-benzylguanine (O6BG) and bis-chloroethylnitrosourea (BCNU) chemotherapy, thus conferring a selective advantage to gene-modified cells in vivo. After transplantation and before in vivo selection with O6BG/BCNU, we observed a successive pattern of hematopoietic reconstitution, with short-term clones declining within 100 days after transplantation. Within the first year after transplant, the percent of persistent clones varied from animal-to-animal, ranging from 8% to 54% of clones detected at a >1% frequency, and remained stable in the absence of selective pressure. Importantly, when animals engrafted with P140K-expressing cells were administered O6BG/BCNU we observed novel clonal patterns, which directly correlated with transplanted cell dose and time of chemotherapy administration after transplant. In all animals, chemotherapy induced emergence of previously undetected clones. In animals receiving ≤12x106 CD34+ cells/kg at the time of transplant (n = 4), chemotherapy also induced a re-emergence of previously declined short-term repopulating clones or a stabilization (i.e. decreased fluctuation) of repopulating clones identified between 100 days and 1 year after transplant. However, in animals receiving robust cell doses, ≥35x106 CD34+ cells/kg (n = 2), chemotherapy more than 1 year after transplant induced a completely novel clonal repertoire. In one animal receiving 22x106 CD34+ cells/kg at transplant, chemotherapy administration beginning <1 year (253 days) after transplant induced clonal stability, which was maintained through two additional chemotherapy treatments. These data suggest that some short-term repopulating clones may have long-term repopulation ability, but revert to a dormant phase within the first year after transplant. Additionally, these data indicate that transplant of excess repopulating cells results in early dormancy of a large proportion of repopulating clones. Together, these findings suggest that previous estimates of HSPC frequency based on clone tracking are an underestimate of true graft repopulation potential. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 658-658
Author(s):  
Lan Wang ◽  
Xin Guan ◽  
Huihui Wang ◽  
Bin Shen ◽  
Yu Zhang ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have become increasingly attractive for the therapy of various hematological system disorders. The aim of this study is to identify approaches that promote the expansion of HSCs. We present here the identification of a combination of small molecules and cytokines that is effective in retaining high stemness of hematopoietic stem/progenitor cells while promoting cell proliferation by inhibiting differentiation. Firstly, five small-molecule candidates were screened for their individual effects on ex vivo expansion of human peripheral blood CD34+ cells in the presence of selected cytokines. The best compounds at their optimal concentrations were further analyzed in combination, to achieve maximum capacity for stimulating the CD34+CD38- cell expansion ex vivo. The extent of cell expansion and the immunophenotype of expanded cells were assessed through flow cytometry. Additional cell and molecular assays were performed to confirm that the expanded CD34± cells are functionally normal in vitro. Subsequently, the expanded cells were transplanted into sublethally irradiated NOD/SCID mice for the assessment ofhuman cell viability and engraftment potential in vivo. Furthermore, the expression of several genes in the cell proliferation and differentiation pathways was analyzed through qPCR during the process of CD34±cell expansion. Following multiple rounds of screening, an optimal formula (named as "SVC cocktail") was obtained, which consisted of four cytokines (stem cell factor, flt-3 ligand, thrombopoietin and interleukin-6) and three small molecules (Stem Regenin 1, valproic acid and CAY10433). CD34+ cells cultured with SVC cocktail had a purity of 76.2%±7.5% and reached expansion folds of 27.9±4.3 for CD34+/CD38- HSCs on day 7. In contrast, CD34+ cells cultured with the cytokines alone displayed a purity of 27.4%±6.3% and expansion folds of 15.5±2.2 for CD34+/CD38- cells. The groups with small molecules only (plus DMSO, the vehicle), or with basal medium only, showed no surviving cells on day 4. Furthermore, cell cycle analysis indicated that the SVC cocktail-induced CD34+/CD38- cells stayed in a more quiescent state (G0/G1: 75.2%±3.6%; S: 9.2%±2.4%). On the other hand, the cells cultured without the three small molecules had active DNA synthesis (G0/G1: 56.0%±2.0%; S: 31.8%±3.2%), implicating a trend of enhanced cell differentiation in the cytokine alone group. RT-qPCR analysis further demonstrated that the expression of HSC stemness markers CD90, CD133, CD117, ALDH1, Bmi1, HoxB4, GATA-2, Runx1, and CXCR4 were elevated in the SVC cocktail-induced CD34+ cells, but dramatically reduced or barely detectable in the cytokine alone group. In addition, CFU assays for the SVC cocktail group vs the cytokine alone group demonstrated BFU-E of 54.0±4.6 vs 11.7±1.5, CFU-GM of 71.0±2.7 vs 8.3±2.5, CFU-GEMM of 40.7±3.8 vs 5.0±2.0 and CFU-Mk of 6.7±1.5 vs 0.7±0.6, respectively. For the in vivo engraftment in mouse bone marrow, human CD45 rate in the SVC cocktail group was much higher than in the cytokine alone group (21.1%±2.7% vs 0.5%±0.1%); similar group differences were also found in the CD34+ and CD34+CD38- rate (7.7%±1.4% vs 1.6%±1.2% and 6.8%±2.2% vs 1.6%±0.1% respectively), all at 8 weeks post transplantation. Moreover, qPCR analysis of Notch and Wnt signaling pathways for cultured cells on day 7 showed that the expression of Notch target genes (related to high activation of HSC property) was enhanced in the SVC cocktail group compare to the cytokine group (HES5: 9.2±2.3 vs 3.6±1.4 in arbitrary units; HEY1: 6.3±1.9 vs 2.6±1.2; HES1: 3.2±1.3 vs 1.3±0.4; Notch1: 1.4±0.3 vs 1.2±0.3), whereas the expression of Wnt target genes (related to activation of HSC differentiation) was greater in the cytokine alone group than in the SVC cocktail group (CCND1: 10.1±4.3 vs 1.2±0.8; LEF1: 4.3±0.6 vs 2.9±0.2; PPAR D: 3.4±0.3 vs 1.5±0.1; FZD2: 1.8±0.2 vs 1.0±0.1). Taken together, our results show that the new SVC cocktail is able to retain the characteristics of HSCs remarkably well, by enhancing their expansion while inhibiting their differentiation. Mechanistically, it appears that the three small molecules can effectively inhibit the cytokines' pro-differentiation effects on CD34+CD38- cells without affecting the cytokines' ability to stimulate cell proliferation. Disclosures Wang: Biopharmagen Corp.: Employment. Ren:Biopharmagen Corp: Employment. Jiang:Biopharmagen Corp: Consultancy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1363-1363
Author(s):  
Ryan Lahey ◽  
Jesper Bonde ◽  
Jan A. Nolta

Abstract The use of iron based nano-particles for multi-modal imaging is gaining interest, since it allows high resolution non-invasive in vivo imaging of human hematopoietic homing and engraftment events in xenograft models. The uptake of ferridex nano-particles complexed to cationic protamine sulphate is believed to be non-specific through mechanisms like endocytosis, but this has not been well defined for hematopoietic stem cells (HSC). In defining ex vivo cultivation strategies for manipulation of human HSC, a key factor is the responsiveness of the most primitive cells to the in vitro conditions, with the aim of maintaining viability without inducing terminal differentiation. Here, we present a novel flow cytometry assay which assesses the earliest molecular responses to a defined clinically applicable ex vivo protocol, aimed at facilitating labeling of human stem/progenitor cells using protamine sulphate complexed nano-particles for subsequent in vivo imaging. We used intracellular staining for the cell cycle inhibitor p27kip1, which is present in the highest levels in non-cycling cells, as the primary flow cytometric marker in combination with CD34, CD133 and Alexa 488, 647 and 750 conjugated ferridex nano-particles and the membrane dye PKH26. An assay was developed to simultaneously assess the molecular events occurring in individual human cord blood Lin− or CD34+ cells while they were cultured for up to 72 hours in X-Vivo 15 serum free medium supplemented with Flt3, SCF and TPO on Retronectin (RN) coated plates with or without nano-particles. Co-expression of p27kip1, CD34 or CD133 in the cultured cells slowly decreases from 86.1% CD34+p27kip1 (T=0) to 76.7%+/−12.2% (T=72) and from 89.6% CD133+p27kip1+ (T=0) to 54.1%+/−10.4% (T=72). We suggest that this slow decrease represents cells dividing and potentially differentiating over the time course of the ex vivo cultivation period. Assessing uptake of fluorescent conjugated nano-particles over a 72 hr period showed that the uptake of particles in CD34+ and CD133+ cells declined significantly after the first 24 hrs., from 32.5+/−3.7% nano-positive CD34+ cells to 19.2+/−2.9% at 48 hours ex vivo with a more significant decline to only 8.3+/−3.7% nano positive CD34+ cells in the culture after 72 hours ex vivo. The same decline in uptake over time was observed in cultured human CB cells that were positive for CD133. PKH26 co-staining demonstrated that the majority of cells that undergo cell division within the first 24 hours of ex vivo culture are the most likely to uptake the nano-particles. In summary, using a multi color p27kip1 based flow-cytometry assay, we found that human Lin−, CD133+, and CD34+ cells uptake Fe-Pro in a fashion which is not entirely cell cycle independent as previously suggested. These data indicate that cell cycle or metabolic status may influence the ability of human hematopoietic stem and progenitor subsets to uptake the protamine sulphate-complexed nano-particles. These findings emphasize the need to carefully develop ex vivo conditions for nano-particle labeling of primary human stem cells in order to perform accurate in vivo imaging of the most primitive human hematopoietic stem and progenitor cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3150-3150
Author(s):  
Shara M. Dellatore ◽  
James A. King ◽  
Tor W. Jensen ◽  
Bi-Huang Hu ◽  
Phillip B. Messersmith ◽  
...  

Abstract Ex vivo expansion of hematopoietic stem cells (HSCs) would greatly facilitate cell and gene therapies. However, HSC division in culture is associated with differentiation. This contrasts with sustained HSC expansion in vivo, and has led to the hypothesis that a stem cell niche supports self-renewal. It is likely that multiple aspects of the niche will have to be mimicked to substantially enhance HSC self-renewal. We are developing a defined culture surface for the presentation of cytokines and cell adhesion molecule (CAM) ligands that are thought to be in the HSC niche. Peptide mimics of CAM ligands and cytokines conjugated to dipalmitoyl glycerol via a polyethylene glycol tether are incorporated into dipalmitoylphosphatidylcholine (DPPC) vesicles and deposited onto a hydrophobic surface to create a lipid monolayer. We have previously shown that this system effectively presents adhesive peptide ligands (Jensen et al., JACS 126:15223, 2004). The strategy for immobilizing lipopeptides has been extended to the presentation of a peptide mimetic for the hematopoietic growth factor thrombopoietin (TPO). The lipopeptide mimetic of TPO is based on the branched dimer mimic (TPOm) developed by Cwirla et al. (Science 276:1696, 1997). We have synthesized two versions of TPOm lipopeptide, the first linked to a lipid at both of the amine termini (TPOm-2L) and the second is linked by a single lipid at the carboxy terminus (TPOm-1L). This immobilization strategy does not interfere with the bioactivity of the TPOm as evidenced by cell adhesion and signaling assays. Adhesion was measured with a normal force assay at 30g using the TPO-responsive M07e cell line. We observed a dose-dependent increase in adhesion, with &lt;5% adherent cells for DPPC surfaces and a plateau of ~70% adherent cells at 1.0 mol% TPOm-1L. There was much less adhesion to TPOm-2L (a maximum of ~25% adhesion). Selective adhesion to the TPOm lipopeptides persisted after 6 days of culture, both in the presence and absence of serum. Culture surfaces with TPOm lipopeptides elicit similar M07e cell signaling response kinetics via the ERK1,2 and STAT5 pathways as compared to soluble TPOm and recombinant human TPO (rhTPO). It is interesting that surface presentation of TPOm synergizes more extensively with stem cell factor (SCF) for the activation of STAT5 than does soluble TPOm. Experiments with bone marrow (BM) CD34+ cells show that surfaces incorporating TPOm-2L supplemented with SCF and flt-3 ligand (FL) support similar overall expansion and protection from apoptosis as controls of soluble TPOm or rhTPO with SCF and FL. Further, there was no difference in the ability of TPOm to retain CD34+ cells or CD34+Thy1+ cells. Also, BM CD34+ cell cultures supplemented with TPOm-1L alone supported similar megakaryocyte maturation, evidenced by the appearance of polyploid CD41+ cells after 9 and 12 days of culture, as those supplemented with soluble TPOm. An advantage of this presentation strategy is the potential to save on cytokines during long-term culture. Feeding cultures stimulated by TPOm lipopeptides requires only exchange of basal media. In summary, we have developed a method to present immobilized TPOm in an active conformation that supports cell adhesion and signaling as well as the expansion and differentiation of CD34+ cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1919-1919
Author(s):  
Iman Hatem Fares ◽  
Jalila Chagraoui ◽  
Jana Krosl ◽  
Denis-Claude Roy ◽  
Sandra Cohen ◽  
...  

Abstract Abstract 1919 Hematopoietic stem cell (HSC) transplantation is a life saving procedure whose applicability is restricted by the lack of suitable donors, by poor responsiveness to mobilization regimens in preparation of autologous transplantations, by insufficient HSC numbers in individual cord blood units, and by the inability to sufficiently amplify HSCs ex vivo. Characterization of Stemregenin (SR1), an aryl hydrocarbon receptor (AHR) antagonist that promotes HSC expansion, provided a proof of principle that low molecular weight (LMW) compounds have the ability to promote HSC expansion. To identify novel putative agonists of HSC self-renewal, we initiated a high throughput screen (HTS) of a library comprising more than 5,000 LMW molecules using the in vitro maintenance of the CD34+CD45RA- phenotype as a model system. Our study was based on the fact that mobilized peripheral blood-derived CD34+CD45RA- cells cultured in media supplemented with: stem cell factor, thrombopoietin, FLT3 ligand and interleukin 6, would promote the expansion of mononuclear cells (MNC) concomitant with a decrease in CD34+CD45RA- population and HSC depletion. LMW compounds preventing this loss could therefore act as agonists of HSC expansion. In a 384-well plate, 2000 CD34+cells were initially cultured/well in 50μl medium comprising 1μM test compounds or 0.1% DMSO (vehicle). The proportions of CD34+CD45RA− cells were determined at the initiation of experiment and after a 7-day incubation. Six of 5,280 LMW compounds (0.11%) promoted CD34+CD45RA− cell expansion, and seventeen (0.32%) enhanced differentiation as determined by the increase in proportions of CD34−CD45RA+ cells compared to control (DMSO). The 6 LMW compounds promoting expansion of the CD34+CD45RA− cell population were re-analyzed in a secondary screen. Four out of these 6 molecules suppressed the transcriptional activity of AHR, suggesting that these compounds share the same molecular pathway as SR1 in stimulating HSC expansion, thus they were not further characterized. The remaining 2 compounds promoted, similar to SR1 or better, a 10-fold and 35-fold expansion of MNC during 7 and 12-day incubations, respectively. The expanded cell populations comprised 65–75% of CD34+ cells compared to 12–30% determined for DMSO controls. During 12-day incubation with these compounds, the numbers of CD34+ cells increased ∼25-fold over their input values, or ∼ 6-fold above the values determined for controls. This expansion of CD34+ cells was associated with a ∼5-fold increase in the numbers of multilineage CFC (granulocyte, erythroid, monocyte, and megakaryocyte, or CFU-GEMM) compared to that found in DMSO control cultures. The ability of the 2 newly identified compounds to expand functional HSCs is currently being evaluated in vivo usingimmunocompromised mice. In conclusion, results of our initial screen suggest that other mechanism, besides inhibition of AhR, are at play for expansion of human HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 1097-1105 ◽  
Author(s):  
G. Güenechea ◽  
J.C. Segovia ◽  
B. Albella ◽  
M. Lamana ◽  
M. Ramı́rez ◽  
...  

Abstract The ex vivo expansion of hematopoietic progenitors is a promising approach for accelerating the engraftment of recipients, particularly when cord blood (CB) is used as a source of hematopoietic graft. With the aim of defining the in vivo repopulating properties of ex vivo–expanded CB cells, purified CD34+ cells were subjected to ex vivo expansion, and equivalent proportions of fresh and ex vivo–expanded samples were transplanted into irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. At periodic intervals after transplantation, femoral bone marrow (BM) samples were obtained from NOD/SCID recipients and the kinetics of engraftment evaluated individually. The transplantation of fresh CD34+ cells generated a dose-dependent engraftment of recipients, which was evident in all of the posttransplantation times analyzed (15 to 120 days). When compared with fresh CB, samples stimulated for 6 days with interleukin-3 (IL-3)/IL-6/stem cell factor (SCF) contained increased numbers of hematopoietic progenitors (20-fold increase in colony-forming unit granulocyte-macrophage [CFU-GM]). However, a significant impairment in the short-term repopulation of recipients was associated with the transplantation of the ex vivo–expanded versus the fresh CB cells (CD45+repopulation in NOD/SCIDs BM: 3.7% ± 1.2% v 26.2% ± 5.9%, respectively, at 20 days posttransplantation; P &lt; .005). An impaired short-term engraftment was also observed in mice transplanted with CB cells incubated with IL-11/SCF/FLT-3 ligand (3.5% ± 1.7% of CD45+ cells in femoral BM at 20 days posttransplantation). In contrast to these data, a similar repopulation with the fresh and the ex vivo–expanded cells was observed at later stages posttransplantation. At 120 days, the repopulation of CD45+ and CD45+/CD34+ cells in the femoral BM of recipients ranged between 67.2% to 81.1% and 8.6% to 12.6%, respectively, and no significant differences of engraftment between recipients transplanted with fresh and the ex vivo–expanded samples were found. The analysis of the engrafted CD45+ cells showed that both the fresh and the in vitro–incubated samples were capable of lymphomyeloid reconstitution. Our results suggest that although the ex vivo expansion of CB cells preserves the long-term repopulating ability of the sample, an unexpected delay of engraftment is associated with the transplantation of these manipulated cells.


2009 ◽  
Vol 84 (5) ◽  
pp. 2490-2501 ◽  
Author(s):  
Sandesh Subramanya ◽  
Sang-Soo Kim ◽  
Sojan Abraham ◽  
Jiahong Yao ◽  
Mukesh Kumar ◽  
...  

ABSTRACT Dengue is a common arthropod-borne flaviviral infection in the tropics, for which there is no vaccine or specific antiviral drug. The infection is often associated with serious complications such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), in which both viral and host factors have been implicated. RNA interference (RNAi) is a potent antiviral strategy and a potential therapeutic option for dengue if a feasible strategy can be developed for delivery of small interfering RNA (siRNA) to dendritic cells (DCs) and macrophages, the major in vivo targets of the virus and also the source of proinflammatory cytokines. Here we show that a dendritic cell-targeting 12-mer peptide (DC3) fused to nona-d-arginine (9dR) residues (DC3-9dR) delivers siRNA and knocks down endogenous gene expression in heterogenous DC subsets, (monocyte-derived DCs [MDDCs], CD34+ hematopoietic stem cell [HSC])-derived Langerhans DCs, and peripheral blood DCs). Moreover, DC3-9dR-mediated delivery of siRNA targeting a highly conserved sequence in the dengue virus envelope gene (siFvED) effectively suppressed dengue virus replication in MDDCs and macrophages. In addition, DC-specific delivery of siRNA targeting the acute-phase cytokine tumor necrosis factor alpha (TNF-α), which plays a major role in dengue pathogenesis, either alone or in combination with an antiviral siRNA, significantly reduced virus-induced production of the cytokine in MDDCs. Finally to validate the strategy in vivo, we tested the ability of the peptide to target human DCs in the NOD/SCID/IL-2Rγ−/− mouse model engrafted with human CD34+ hematopoietic stem cells (HuHSC mice). Treatment of mice by intravenous (i.v.) injection of DC3-9dR-complexed siRNA targeting TNF-α effectively suppressed poly(I:C)-induced TNF-α production by DCs. Thus, DC3-9dR can deliver siRNA to DCs both in vitro and in vivo, and this delivery approach holds promise as a therapeutic strategy to simultaneously suppress virus replication and curb virus-induced detrimental host immune responses in dengue infection.


2020 ◽  
Author(s):  
Alireza Shokouhifar ◽  
Gholamreza Anani Sarab ◽  
Mahboubeh Yazdanifar ◽  
Mohammad Fereidouni ◽  
Masoumeh Nouri ◽  
...  

Abstract BackgroundNatural killer (NK) cells differentiated from umbilical cord blood (UCB) hematopoietic stem cells (HSCs) may be more suitable for cell-based immunotherapy compared to NK cells from adult donors. This is due to opportunity to choose alloreactive donors and potentially more robust in vivo expansion. However, the cytotoxicity of UCB-HSC derived NK cells against cancer cells might be suboptimal. To overcome this obstacle, we attempted to generate NK cells with potent antitumor activity by targeting RAS/MAPK, IGF-1R and TGF-β signaling pathways.MethodsThe CD34+ cells isolated from human UCB mononuclear cells through MACS with purity of (≥90%) were used to be differentiated into NK cells. After 21 days of induction with SFTG36, IS721 and IL-15/Hsp70 media, NK cells phenotype was studied and their cytotoxicity against K562 human erythroleukemia cell and SKOV3 ovarian carcinoma cells was analyzed.ResultsThe induced NK cells treated with SFTG36/I721 and SFTG36/IS721 growth factor cocktail expressed a phenotype with CD56+16+CD3- and NKG2D+ with mean fluorescence intensity (MFI) of 92.7%±1.45-168.00±19.20 and 93.23%±0.75-168.66±20.00 respectively. These NK cells once activated by IL-15, demonstrated a higher cytotoxicity against K562 (≥90%) (P ≤ 0.001) and SKOV3 tumor cells (≥65%) (P ≤ 0.001) compared to IL-15/Hsp70 activated NK cells.Conclusion The differentiation of ex vivo-expanded CD34+ cells through manipulation of RAS/MAPK, IGF-1R and TGF-β signaling pathways is an efficient approach for generating functional NK cells that can be used for cancer immunotherapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1687-1687
Author(s):  
Tao Cheng ◽  
Hui Yu ◽  
Donna Shields ◽  
Youzhong Yuan ◽  
Hongmei Shen

Abstract Our recent study demonstrated that the cyclin-dependent kinase inhibitor (CKI) p18Ink4c (p18), also an INK4 family protein acting at early G1-phase, exerts its inhibitory role during the self-renewing division of murine hematopoietic stem cells (HSC) in vivo (Nature Cell Biology 2004). Down-modulating p18 may permit enhanced stem cell expansion in vitro, a hypothesis that is now being testing in our laboratory. To provide the proof-of-the concept, we first took advantage of the murine system by testing the in vivo reconstituting ability of cells that had been cultured under the Dexter culture condition for 19 weeks. 2–20x105 cells with non-adherent and adherent populations were transplanted into lethally irradiated hosts. 3 of 7 mice revealed long-term engraftment in the p18−/− transplanted group (0.5–33% engraftment levels) while there was no engraftment in the p18+/+ group (n=7). Moreover, a substantial level (38.6% on average) of long-term engraftments (7 months) in multilineage was achieved in secondary recipients transplanted with the p18−/− cells (n=3), demonstrating the self-renewal potential of the expanded HSCs after the extended period of long-term culture. These data strongly indicate that p18 absence is able to substantially mitigate the differentiating effect of the ex vivo culture conditions on HSCs and therefore offer a strong rationale for targeting p18 in human HSC expansion. P18 mRNA was detected by RT PCR in human CD34+ cells with a higher expression level in the more primitive subset: CD34+CD38−. To explore the possibility of targeting p18 for expanding human HSCs, we have employed the RNA interference (RNAi) technology in CD34+ cord blood cells. We screened a pool of small interfering RNA (siRNA) oligos and three of them were able to effectively reduce p18 expression by 60–80% in 48 hours as assessed by both RNA and protein analyses in human cells. Further, we tested both transient and permanent delivery methods for introducing the RNAi effect in the CD34+CD38− cells. To demonstrate whether the RNAi method would be sufficient to impact the outcome of cell division after a single or limited cell cycle(s), we chose the nucleofector technology and were able to achieve 48.30±11.66% of transduction efficiency with good viability (50.63±9.38%, n=3) in human CD34+ cells. After a single electroporation pulse, we were able to increase by 2-fold the CD34+CD38− cells associated with the same magnitude of increased colony forming activity under culture condition supplemented with SCF, TPO and Flt3. To observe the long-term effect of p18 downregulation in human HSCs, we constructed a p18 short hairpin (shRNA)-expressing lentiviral vector that was engineered to have the mouse U6 promoter upstream of a CMV-EGFP expression cassette. A transduction efficiency of 30–60% was achieved after overnight infection of the human CD34+ cells with the p18 shRNA or with control lentiviral vectors pseudotyped with the VSV-g envelope. 72–96 hours after the transduction, human p18 protein can be knocked down by the p18 siRNA lentivector at near 100% in the HeLa cell line as determined on the western blot, and at more than 50% in human primary CD34+ cells as determined by real time RT PCR. We are currently undertaking further study aimed at assessing the repopulating ability of the transduced human HSCs with lentivirus-mediated p18 shRNA in NOD/SCID mice. Together, these findings suggest that down-modulating p18 might be a feasible approach for manipulating human HSCs ex vivo.


Sign in / Sign up

Export Citation Format

Share Document