Differentially Expressed and Novel Transcripts in Highly Purified Chronic Phase CML Stem Cells

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 193-193
Author(s):  
Yun Zhao ◽  
Allen Delaney ◽  
Afshin Raouf ◽  
Kamini Raghuram ◽  
Haiyan I Li ◽  
...  

Abstract The chronic phase of CML is sustained by rare BCR-ABL+ stem cells. These cells share many properties with normal pluripotent hematopoietic stem cells, but also differ in critical ways that alter their growth, drug responsiveness and genome stability. Understanding the molecular mechanisms underlying the biological differences between normal and CML stem cells is key to the development of more effective CML therapies. To obtain new insights into these mechanisms, we generated Long Serial Analysis of Gene Expression (SAGE) libraries from paired isolates of highly purified lin-CD34+CD45RA-CD36- CD71-CD7-CD38+ and lin-CD34+CD45RA-CD36-CD71-CD7-CD38- cells from 3 chronic phase CML patients (all with predominantly Ph+/BCR-ABL+ cells in both subsets) and from 3 control samples: a pool of 10 normal bone marrows (BMs), a single normal BM and a pool of G-CSF-mobilized blood cells from 9 donors. In vitro bioassays showed the CD34+CD38+ cells were enriched in CFCs (CML: 3–20% pure; normal: 4–19% pure) and the CD34+CD38- cells were enriched in LTC-ICs (CML: 0.2–26% pure; normal: 12–52% pure). Each of the 12 libraries was then sequenced to a depth of ~200,000 tags and tags from libraries prepared from like phenotypes were compared between genotypes using DiscoverySpace software and hierarchical clustering. 1687 (355 with clustering) and 1258 (316 with clustering) transcripts were thus identified as differentially expressed in the CML vs control CD34+CD38− and CD34+CD38+ subsets, respectively. 266 of these transcripts (11 with clustering) were differentially expressed in both subsets. The differential expression of 5 genes (GAS2, IGF2BP2, IL1R1, DUSP1 & SELL) was confirmed by real-time PCR analysis of lin-CD34+ cells isolated from an additional 5 normal BMs and 11 CMLs, and lin-CD34+CD38− cells from an additional 2 normal BMs and 2 CMLs (with dominant Ph+ cells). GAS2 and IL1R1 transcript levels were correlated with BCR-ABL transcript levels in both primitive subsets, and predicted differences in expression of IL1R1 and SELL were apparent within 3 days in CD34+ cord blood cells transduced with a lenti-BCR-ABL-IRES-GFP vs a control lenti-GFP vector (n=3). These findings support a direct role of BCR-ABL in perturbing the expression of these 3 genes. Further comparison of the meta CD34+CD38− and CD34+CD38+ CML cell libraries with most publicly accessible SAGE data revealed 69 novel tags in the CD34+ CML cells that correspond to unique but conserved genomic sequences. Nine of these were recovered by 5′- and 3′- RACE applied to cDNAs pooled from several human leukemic cell lines. These results illustrate the power of SAGE to reveal key components of the transcriptomes of rare human CML stem cell populations including transcripts of genes not previously known to exist. Continuing investigation of their biological roles in primary CML cells and primitive BCR-ABL-transduced human cells offer important strategies for delineating their potential as therapeutic targets.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2432-2432 ◽  
Author(s):  
James Q Yin ◽  
Chunji Gao ◽  
Bing Han ◽  
Jianliang Sheng

Abstract Introduction Naturally-occurring regeneration of cells and tissues is generally involved in four working mechanisms such as directed differentiation, dedifferentiation, trans-differentiation and transdetermination. The better exploring of these mechanisms could be beneficial to develop clinical strategies for regenerative medicine and to reduce the likelihood of immune rejection and relevant complications Recently, “trans-determination” has attracted great controversy, mostly in regards to whether adult stem cells can colonize other tissues after transplantation. More importantly, how to generate large amounts of a particular stem cell type through a transdetermination process remained to be unsolved. Similarly, it is unclear whether mesenchymal stem cells (MSCs) can transdeterminate into hematopoietic stem cells (HSCs). Methods Many technologies were used to validate the transdetermination of adipose-derived mesenchymal stem cells (AD-MSCs) into hematopoietic stem cells (HSCs) from different aspects. They include FACS analysis, PCR tests, immunostaining, expansion and repopulating assays, transplantation analysis and others, showing their in vivo and in vitro potentials for long-term self-renewal and differentiation into multi-lineages of blood cells. Moreover, these AD-HSCs can reconstitute hematopoietic function in six patients. Results We report firstly here that a huge number of human AD-MSCs that are CD44+,CD29+, CD105+, CD166+,CD133-,CD34- could rapidly transdifferentiate into hematopoietic stem cells (CD49f+/CD133+/CD34+) and their descending blood cells in vitro, after transfected with two small RNAs. The sRNAs were high-effectively delivered into MSCs by a novel peptide means. These adipose-derived HSCs (AD-HSCs) could form different types of hematopoietic colonies as nature-occurring HSCs did. Upon the primary and secondary transplantation into sublethally or lethally irradiated mice, these MSC-HSCs engrafted and differentiated into all hematopoietic lineages such as erythrocytes, lymphocytes, myelocytes and thrombocytes. Furthermore, we demonstrated the first evidence that the transdetermination of MSCs was induced by acetylation of histone proteins and activation of many transcriptional factors. More excitingly, these MSC-derived HSCs can reconstitute hematopoietic function in six patients with severe aplastic anemia. Conclusion our findings identify the molecular mechanisms that regulate the directed transdifferentiation of MSCs toward HSCs, create a new source for individual HSC transplantation used for the treatment of blood diseases and cancers, and break the stalemate caused by bone marrow match and graft-versus-host disease. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 2 (8) ◽  
pp. 832-845 ◽  
Author(s):  
Corina Schneidawind ◽  
Johan Jeong ◽  
Dominik Schneidawind ◽  
In-Suk Kim ◽  
Jesús Duque-Afonso ◽  
...  

Key Points Genome editing induces t(9;11) chromosomal translocations and transforms primary CD34+ human cord blood cells leading to acute leukemia. CD9 is upregulated in primary t(9;11) cells and is a useful marker for enrichment of genome-edited MLL-rearranged cells in vitro.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 3041-3051 ◽  
Author(s):  
JA Nolta ◽  
MB Hanley ◽  
DB Kohn

Abstract We have developed a novel cotransplantation system in which gene- transduced human CD34+ progenitor cells are transplanted into immunodeficient (bnx) mice together with primary human bone marrow (BM) stromal cells engineered to produce human interleukin-3 (IL-3). The IL- 3-secreting stroma produced sustained circulating levels of human IL-3 for at least 4 months in the mice. The IL-3-secreting stroma, but not control stroma, supported human hematopoiesis from the cotransplanted human BM CD34+ progenitors for up to 9 months, such that an average of 6% of the hematopoietic cells removed from the mice were of human origin (human CD45+). Human multilineage progenitors were readily detected as colony-forming units from the mouse marrow over this time period. Retroviral-mediated transfer of the neomycin phosphotransferase gene or a human glucocerebrosidase cDNA into the human CD34+ progenitor cells was performed in vitro before cotransplantation. Human multilineage progenitors were recovered from the marrow of the mice 4 to 9 months later and were shown to contain the transduced genes. Mature human blood cells marked by vector DNA circulated in the murine peripheral blood throughout this time period. This xenograft system will be useful in the study of gene transduction of human hematopoietic stem cells, by tracing the development of individually marked BM stem cells into mature blood cells of different lineages.


2013 ◽  
Vol 40 (12) ◽  
pp. 1249 ◽  
Author(s):  
Hai-fen Li ◽  
Xiao-Ping Chen ◽  
Fang-he Zhu ◽  
Hai-Yan Liu ◽  
Yan-Bin Hong ◽  
...  

Peanut (Arachis hypogaea L.) produces flowers aerially, but the fruit develops underground. This process is mediated by the gynophore, which always grows vertically downwards. The genetic basis underlying gravitropic bending of gynophores is not well understood. To identify genes related to gynophore gravitropism, gene expression profiles of gynophores cultured in vitro with tip pointing upward (gravitropic stimulation sample) and downward (control) at both 6 and 12 h were compared through a high-density peanut microarray. After gravitropic stimulation, there were 174 differentially expressed genes, including 91 upregulated and 83 downregulated genes at 6 h, and 491 differentially expressed genes including 129 upregulated and 362 downregulated genes at 12 h. The differentially expressed genes identified were assigned to 24 functional categories. Twenty pathways including carbon fixation, aminoacyl-tRNA biosynthesis, pentose phosphate pathway, starch and sucrose metabolism were identified. The quantitative real-time PCR analysis was performed for validation of microarray results. Our study paves the way to better understand the molecular mechanisms underlying the peanut gynophore gravitropism.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1449-1449
Author(s):  
Naoya Uchida ◽  
Aylin Bonifacino ◽  
Allen E Krouse ◽  
Sandra D Price ◽  
Ross M Fasano ◽  
...  

Abstract Abstract 1449 Granulocyte colony-stimulating factor (G-CSF) in combination with plerixafor (AMD3100) produces significant mobilization of peripheral blood stem cells in the rhesus macaque model. The CD34+ cell population mobilized possesses a unique gene expression profile, suggesting a different proportion of progenitor/stem cells. To evaluate whether these CD34+ cells can stably reconstitute blood cells, we performed hematopoietic stem cell transplantation using G-CSF and plerixafor-mobilized rhesus CD34+ cells that were transduced with chimeric HIV1-based lentiviral vector including the SIV-capsid (χHIV vector). In our experiments, G-CSF and plerixafor mobilization (N=3) yielded a 2-fold higher CD34+ cell number, compared to that observed for G-CSF and stem cell factor (SCF) combination (N=5) (8.6 ± 1.8 × 107 vs. 3.6 ± 0.5 × 107, p<0.01). Transduction rates with χHIV vector, however, were 4-fold lower in G-CSF and plerixafor-mobilized CD34+ cells, compared to G-CSF and SCF (13 ± 4% vs. 57 ± 5%, p<0.01). CD123+ (IL3 receptor) rates were higher in CD34+ cells mobilized by G-CSF and plerixafor (16.4%) or plerixafor alone (21.3%), when compared to G-CSF alone (2.6%). To determine their repopulating ability, G-CSF and plerixafor-mobilized CD34+ cells were transduced with EGFP-expressing χHIV vector at MOI 50 and transplanted into lethally-irradiated rhesus macaques (N=3). Blood counts and transgene expression levels were followed for more than one year. Animals transplanted with G-CSF and plerixafor-mobilized cells showed engraftment of all lineages and earlier recovery of lymphocytes, compared to animals who received G-CSF and SCF-mobilized grafts (1200 ± 300/μl vs. 3300 ± 900/μl on day 30, p<0.05). One month after transplantation, there was a transient development of a skin rash, cold agglutinin reaction, and IgG and IgM type plasma paraproteins in one of the three animals transplanted with G-CSF and plerixafor cells. This animal had the most rapid lymphocyte recovery. These data suggested that G-CSF and plerixafor-mobilized CD34+ cells contained an increased amount of early lymphoid progenitor cells, compared to those arising from the G-CSF and SCF mobilization. One year after transplantation, transgene expression levels were 2–5% in the first animal, 2–5% in the second animal, and 5–10% in the third animal in all lineage cells. These data indicated G-CSF and plerixafor-mobilized CD34+ cells could stably reconstitute peripheral blood in the rhesus macaque. Next, we evaluated the correlation of transgene expression levels between in vitro bulk CD34+ cells and lymphocytes at one month, three months, and six months post-transplantation. At one and three months after transplantation, data from G-CSF and plerixafor mobilization showed higher ratio of %EGFP in lymphocytes to that of in vitro CD34+ cells when compared to that of G-CSF and SCF mobilization. At six months after transplantation the ratios were similar. These results again suggest that G-CSF and plerixafor-mobilized CD34+ cells might include a larger proportion of early lymphoid progenitor cells when compared to G-CSF and SCF mobilization. In summary, G-CSF and plerixafor mobilization increased CD34+ cell numbers. G-CSF and plerixafor-mobilized CD34+ cells contained an increased number of lymphoid progenitor cells and a hematopoietic stem cell population that was capable of reconstituting blood cells as demonstrated by earlier lymphoid recovery and stable multilineage transgene expression in vivo, respectively. Our findings should impact the development of new clinical mobilization protocols. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4236-4236
Author(s):  
Kelly A. Turner ◽  
Katharina Rothe ◽  
Adrian Woolfson ◽  
Xiaoyan Jiang

Abstract Chronic myeloid leukemia (CML) stem/progenitor cells are relatively insensitive to tyrosine kinase inhibitor (TKI) monotherapies, and may not exclusively rely on BCR-ABL activity for survival. This population rapidly generates therapy-resistant clones and is often responsible for relapse after TKI therapy discontinuation. It has been reported that Hedgehog (HH) signalling in hematopoietic stem/progenitor cells is essential for CML induction by BCR-ABL in a mouse model. Inhibition of Smoothened (SMO), a key regulator of the HH pathway, reduces the number of BCR-ABL+ stem cells in vitro and slows disease progression in vivo. However, it is not known if SMO and other key regulators are differentially expressed in stem/progenitor cells derived from imatinib (IM)-nonresponders and IM-responders. If so, they may serve as potential biomarkers and/or therapeutic targets. We have assessed gene expression changes in the HH pathway using RNA sequencing (RNA-seq) in 6 highly purified CD34+ stem/progenitor samples from newly-diagnosed chronic phase (CP)-CML patients. After IM therapy was initiated, 3 patients were classified retrospectively as IM-responders, and 3 as IM-nonresponders. This study identified 27 differentially expressed HH genes between healthy and CML patients (>1.5-fold). In particular, SMO and GLI2, key components of the HH pathway,were upregulated in CP-CML patients relative to healthy bone marrow (HBM) controls (n=3).In particular, GLI2 was highly overexpressed in CP-CML compared to HBM (48-fold upregulated in IM-responders and 166-fold upregulated in IM-nonresponders). To validate the RNA-seq results, expression of the principal HH genes (PTCH1, GLI1, GLI2, SMO) was assessed in 18 CD34+ CP-CML patient samples and 8 HBM samples using qRT-PCR. Interestingly, the expression levels correlated with patients' TKI resistance status, with IM-nonresponders expressing significantly higher levels of SMO (p<0.01)and GLI2 (p<0.05) compared with IM-responders. GLI2 and SMO expression was then assessed in CD34-subpopulations in 5 IM-responders and 4 IM-nonresponder samples. GLI2 was exclusively and highly expressed in the most primitive population (lin-CD34+CD38-), while its expression was very low in more mature populations (lin-CD34+38+ and CD34-). This effect was amplified in IM-nonresponder samples, where GLI2 is greater than 40-fold upregulated in the lin-CD34+CD38- subpopulation compared with IM-responders. In contrast, SMO was more uniformly expressed in both stem and progenitor subpopulations, but was more highly expressed in IM-nonresponders than IM-responders.These results suggest that key regulators of the HH pathway are highly expressed in IM-nonresponder stem cells and that these cells may be more responsive to SMO inhibition than IM-responder cells. We then performed a viability and apoptosis analysis of 5 CD34+ CP-CML patient samples. IM-nonresponder samples were more sensitive to SMO inhibition using a highly selective SMO inhibitor (PF-04449913) compared with IM-responders, and this effect was enhanced in combination with the new TKI bosutinib (BOS). To investigate the effects of BOS and PF-04449913 on CML progenitor cells, colony forming cell assays were performed on CD34+ CP-CML cells from 4 IM-responders and 3 IM-nonresponders. Overall, combination treatment with BOS and PF-04449913 only modestly reduced colony forming ability compared to either agent alone. The inhibitory effects of combination therapy were, however, strikingly enhanced in a replating experiment, resulting in a greatly reduced replating efficiency compared to BOS treatment alone (15% vs. 30%), suggesting that the combination specifically targets primitive CP-CML cells. Taken together, we have demonstrated that both SMO and GLI2 are highly expressed in primitive CP-CML cells, and that the transcript levels of GLI2 are significantly increased in CP-CML stem cells from IM-nonresponders, which may serve as a new biomarker to predict patient TKI responsivity. We also found that IM-nonresponder stem/progenitor cells are more sensitive to SMO suppression in short- and long-term assays compared with IM-responders, suggesting that HH pathway activation may comprise a potential mechanism of resistance during TKI therapy, and that dual inhibition of the BCR-ABL and HH pathways may constitute a rational approach to abrogate drug resistance and disease progression in CML. Disclosures Woolfson: Pfizer Inc: Employment.


2020 ◽  
Vol 8 (4) ◽  
pp. 139-145
Author(s):  
Rut Bryl ◽  
Claudia Dompe ◽  
Maurycy Jankowski ◽  
Katarzyna Stefańska ◽  
Afsaneh Golkar Narenji ◽  
...  

AbstractDue to its availability and accessibility, adipose tissue has been the subject of various studies in many different medical fields and is believed to be a useful source of stem cells. The ability of ASCs to differentiate towards different cell lineages, with possibility of directing this differentiation, increases their possible clinical applications, and they have been widely employed in multiple therapies and treatment of different pathologies. However, a deeper understanding of the molecular mechanisms underlying the ASCs osteoblastic and chondrocyte differentiation may lead to novel applications treating a multitude of different bone-related diseases through techniques more likely meeting worldwide consensus. In this study, the RT-qPCR method was used to determine the changes in expression of ASC specific markers (CD105, CD73, CD14, CD34, CD90 and CD45) before and after long-term (14-day) in vitro cultures. To confirm the identity of the investigated cells, flow cytometry was used to evaluate the presence of positive (CD44, CD90) and negative (CD45, CD34) ASC markers. Overall, the results of the PCR analysis showed a significant change in expression of most of the marker genes, indicating significant changes in the cultured cells caused by their long-term culture, potentially altering their original stem-like characteristics.Running title: ASC marker expression during long-term in vitro culture


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Akhilesh Kumar ◽  
Saritha S. D’Souza ◽  
Abir S. Thakur

Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to createin vitromodels of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review howin vitrodifferentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 560-567 ◽  
Author(s):  
David G. Kent ◽  
Brad J. Dykstra ◽  
Jay Cheyne ◽  
Elaine Ma ◽  
Connie J. Eaves

Abstract Hematopoietic stem cells (HSCs) regenerated in vivo display sustained differences in their self-renewal and differentiation activities. Variations in Steel factor (SF) signaling are known to affect these functions in vitro, but the cellular and molecular mechanisms involved are not understood. To address these issues, we evaluated highly purified HSCs maintained in single-cell serum-free cultures containing 20 ng/mL IL-11 plus 1, 10, or 300 ng/mL SF. Under all conditions, more than 99% of the cells traversed a first cell cycle with similar kinetics. After 8 hours in the 10 or 300 ng/mL SF conditions, the frequency of HSCs remained unchanged. However, in the next 8 hours (ie, 6 hours before any cell divided), HSC integrity was sustained only in the 300 ng/mL SF cultures. The cells in these cultures also contained significantly higher levels of Bmi1, Lnk, and Ezh2 transcripts but not of several other regulators. Assessment of 21 first division progeny pairs further showed that only those generated in 300 ng/mL SF cultures contained HSCs and pairs of progeny with similar differentiation programs were not observed. Thus, SF signaling intensity can directly and coordinately alter the transcription factor profile and long-term repopulating ability of quiescent HSCs before their first division.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 516-516 ◽  
Author(s):  
Daniel Goff ◽  
Alice Shih ◽  
Angela Court Recart ◽  
Larisa Balaian ◽  
Ryan Chuang ◽  
...  

Abstract Abstract 516 Introduction: Several studies have demonstrated the role of leukemia stem cells (LSC) in the development and maintenance of human chronic myeloid leukemia (CML). These cells, which first develop in chronic phase CML (CP CML) with acquisition of the BCR-ABL fusion protein, are often quiescent and can be highly resistant to apoptosis induced by drugs and radiotherapy that target rapidly dividing cells. Data has also shown that CML LSC become increasingly resistant to BCR-ABL inhibition with progression to blast crisis CML (BC CML). Bcl-2 family proteins are key regulators of apoptosis and have been shown by numerous studies to regulate cancer resistance to chemotherapy. This family of proteins has also been implicated in the development of BC CML, however most studies have focused on CML cell lines and their expression of Bcl-2 family proteins in vitro. Thus, there is relatively little data on expression of Bcl-2 family proteins in primary CML LSC and on the role of these proteins in regulating chemotherapy resistance in CML LSC in vivo. As Bcl-2 family proteins are known regulators of chemotherapy resistance we hypothesized that human BC CML LSC may overexpress these proteins compared to normal hematopoietic stem cells. We analyzed Bcl-2 family mRNA and protein expression in CP CML and BC CML LSC and compared this expression to normal cord blood stem and progenitor cells. We also analyzed whether these cells were sensitive to chemotherapy treatment in vitro. Finally, we tested whether a high potency pan-Bcl-2 inhibitor, 97C1, could effectively kill CML LSC in vitro and in vivo. Methods: Bcl-2 and Mcl-1 protein expression was measured in primary CP CML, BC CML, and normal cord blood cells using intracellular FACS. We also measured Bcl-2, Mcl-1, Bcl-X, and Bfl-1 mRNA expression in FACS sorted CD34+CD38+lin− cells (LSC) from these samples. For all drug studies we used either serially transplanted CD34+ cells derived from primary BC CML patient samples or primary CD34+ normal cord blood cells. In vitro drug responses were tested by culturing CD34+ cells either alone or in co-culture with a mouse bone marrow stromal cell line (SL/M2). Effects on colony formation and replating were also tested by culturing sorted CD34+CD38+lin− cells in methylcellulose in the presence and absence of drug. For in vivo testing of 97C1 we transplanted neonatal RAG2-/-yc-/- mice with CD34+ cells from 3 different BC CML and cord blood samples. Transplanted mice were screened for peripheral blood engraftment at 6–8 weeks post-transplant and engrafted mice were then treated for 2 weeks with 97C1 by IP injection. Following the treatment period the mice were sacrificed and hemotapoietic organs were analyzed for human engraftment by FACS. Results: BC CML progenitors expressed higher levels of Bcl-2 and Mcl-1 protein compared to normal cord blood and chronic phase CML cells. mRNA expression of Mcl-1, Bcl-X, and Bfl-1 was also increased in BC CML progenitors compared to CP CML progenitors. While BC CML LSC cultured in vitro were resistant to etoposide and dasatinib-induced cell death, 97C1 treatment led to a dose-dependent increase in cell death along with a dose-dependent decrease in the frequency of CD34+CD38+lin− cells compared to vehicle treated controls. While cord blood progenitor cells were also sensitive to 97C1 treatment they had an IC50 around 10 times higher than that for the BC CML cells (100nM versus 10nM). Importantly, 97C1 treatment did not inhibit cord blood colony formation or colony replating in vitro. Mice transplanted with BC CML LSC developed CML in 6–8 weeks post-transplant with diffuse myeloid sarcomas and engraftment of human CD34+CD38+lin− cells in the peripheral blood, liver, spleen, and bone marrow. In vivo treatment with 97C1 led to a significant reduction in both total human engraftment and engraftment of CD34+CD38+lin− cells in all hematopoietic organs analyzed. Conclusion: Our results demonstrate that BC CML LSC are resistant to conventional chemotherapy but are sensitive to 97C1 in vitro and in vivo. Broad-spectrum inhibition of Bcl-2 family proteins may help to eliminate CML LSC while sparing normal hematopoietic stem and progenitor cells. Disclosures: Jamieson: CoronadoBiosciences: Research Funding; CIRM: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document