A Genome-Wide Approach Identifies Variations in the Aspartate Metabolism Pathway That Are Associated with Asparaginase Sensitivity

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 213-213
Author(s):  
Shih-Hsiang Chen ◽  
Wenjian Yang ◽  
Yiping Fang ◽  
Gabriele Stocco ◽  
Kristine R. Crews ◽  
...  

Abstract Asparaginase is an important drug for acute lymphoblastic leukemia (ALL). The basis for interindividual differences in asparaginase sensitivity remains unclear. To comprehensively identify genetic variants important in asparaginase sensitivity, we employed a genome-wide association approach using the HapMap lymphoblastoid cell lines from 87 individuals of European ancestry (CEU) and diagnostic ALL blasts from 42 newly diagnosed, genomically-determined white patients. In vitro sensitivity was based on IC50 values measured following 48 hour exposures to native E. coli asparaginase (0.003–100 IU/ml) in CEU cell lines and 96 hour exposures (0.003–10 IU/ml) in patient samples using the methylthiazol tetrazolium assay. For CEU cell lines, single nucleotide polymorphism (SNP) genotypes were downloaded from the International HapMap database (www.hapmap.org) and gene expression data (Affymetrix GeneChip Human Exon 1.0 ST Array) were downloaded from http://www.ncbi.nlm.nih.gov/geo/query/acc. cgi?acc=GSE7761. For patients with ALL, we used the 500K SNP arrays to interrogate germline DNA and Affymetrix U133A GeneChip Array to assess gene expression in ALL blasts. We tested whether 2,390,203 SNP genotypes were associated with asparaginase IC50 using a linear mixed effect model in CEU cell lines, setting a p value threshold of p < 0.001 for individual SNPs and p < 0.05 at the gene level. This approach yielded 329 SNPs representing 94 genes. Combining these germline SNPs with those representing genes whose expression was also associated with IC50 at the p < 0.05 level (1,706 genes), there were 6 SNPs representing 5 genes, two of which (rs8135371 and rs17001863, both in the ADSL gene) contributed to asparaginase sensitivity (p = 6.9 × 10−4 and 9.1 × 10− 4, respectively) through their effects on ADSL gene expression. The top ranked KEGG pathway overrepresented by the 94 top-ranked genes (329 SNPs) was that of aspartate metabolism, which may be directly linked to the mechanism of action of asparaginase. The two most highly ranked genes (ADSL and DARS) in this pathway encompassed 7 SNPs (rs8135371, rs17001863, rs3768998, rs2278683, rs11893318, rs2322725, and rs7587285), all with p < .001. Using multiple linear regression analysis, 32% of the variability in asparaginase IC50 among the CEU cell lines could be accounted for by these 7 SNPs (p = 5.9 × 10−7). To examine the overall contribution of the aspartate metabolism pathway to asparaginase IC50, we compared all SNPs (935 in cell lines, 717 in patients) representing the aspartate pathway with those SNPs representing other pathways, using a random forest model. We found that the SNP genotypes in the aspartate pathway explained significantly more variation in asparaginase IC50 in cell lines (11.4%, p = 6.9 × 10−4) and in ALL patient samples (11.2%, p = 0.02) than other pathways. The expression of ADSL differed among ALL subtypes, with more sensitive subtypes (hyperdiploid and TEL-AML1 ALL) having lower ADSL expression than more resistant subtypes (T-ALL) (p = 1.1 × 10−5 and 2.9 × 10−9, respectively). Genome-wide interrogation of CEU cell lines and primary ALL blasts revealed that inherited and acquired genomic interindividual variation in a plausible candidate pathway contribute to asparaginase sensitivity.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3892-3892
Author(s):  
Timothy Best ◽  
Andrew D Skol ◽  
Eric Gamazon ◽  
Kenan Onel

Abstract Abstract 3892 Survivors of Hodgkin lymphoma (HL) are susceptible to radiation-induced second malignant neoplasms (SMNs). In a genome-wide association study (GWAS) of patients treated for HL who did or did not develop SMNs, we identified and validated two SMN-associated single nucleotide polymorphisms (SNPs) at 6q21, intergenic between PRDM1 and ATG5 [rs4946728: P = 1.04×10-9, OR = 3.21 (95% CI = 2.37–6.42), and rs1040411: P = 4.24×10-8, OR = 2.43 (95% CI = 1.76–3.34)]. Recently, it was demonstrated that disease-associated SNPs are more likely to be expression quantitative trait loci (eQTLs), SNPs that regulate gene expression, than are randomly chosen SNPs matched for their population allele frequencies. Indeed, we found that the 1000 SNPs most associated with SMNs are significantly enriched for eQTLs (P = 0.01). Exploring the processes regulated by SMN-associated SNPs can inform the mechanism by which SMNs result in patients treated with radiation therapy. As an initial investigation of the effect of these SNPs on gene expression, we studied the effect of the validated 6q21 haplotype (comprised of rs4946728 and rs1040411) on global gene expression in HapMap lymphoblastoid cell lines (LCLs). Gene set enrichment analysis of genes differentially expressed (log2>0.05) between cell lines carrying either the risk or protective haplotype revealed that carriage of the risk-associated haplotype was associated with increased expression of transmembrane proteins (enrichment P = 2.1×10-13) and immune response proteins (enrichment P = 1.2×10-6). Because the 6q21 haplotype is in close physical proximity to ATG5 and PRDM1, we investigated its functional consequence on expression of these genes. We discovered the risk-associated haplotype was significantly associated with lower levels of PRDM1 mRNA (P = 0.04) but not ATG5 mRNA. As exposure to radiation is the primary etiologic factor for SMNs, we assessed the effect of the risk haplotype on protein levels of PRDM1 and ATG5 in six LCLs (three with the risk haplotype and three with the protective haplotype) following 10Gy of gamma irradiation (IR). PRDM1 protein levels were significantly lower in LCLs carrying the risk-associated haplotype in the absence of IR. In all lines, PRDM1 levels increased following radiation exposure, but this effect was significantly attenuated in presence of the risk haplotype. In sum, these data suggest that SNPs associated with SMNs following HL are enriched for SNPs that regulate gene expression. We demonstrate that the validated risk alleles at 6q21 are associated with differences in PRDM1 mRNA and protein levels and response to radiation. These observations suggest a model in which PRDM1 may be a key regulator of the radiation-response that protects against the emergence of SMNs. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Mehta ◽  
Karen Grewen ◽  
Brenda Pearson ◽  
Shivangi Wani ◽  
Leanne Wallace ◽  
...  

AbstractMaternal postpartum depression (PPD) is a significant public health concern due to the severe negative impact on maternal and child health and well-being. In this study, we aimed to identify genes associated with PPD. To do this, we investigated genome-wide gene expression profiles of pregnant women during their third trimester of pregnancy and tested the association of gene expression with perinatal depressive symptoms. A total of 137 women from a cohort from the University of North Carolina, USA were assessed. The main phenotypes analysed were Edinburgh Postnatal Depression Scale (EPDS) scores at 2 months postpartum and PPD (binary yes/no) based on an EPDS cutoff of 10. Illumina NextSeq500/550 transcriptomic sequencing from whole blood was analysed using the edgeR package. We identified 71 genes significantly associated with postpartum depression scores at 2 months, after correction for multiple testing at 5% FDR. These included several interesting candidates including TNFRSF17, previously reported to be significantly upregulated in women with PPD and MMP8, a matrix metalloproteinase gene, associated with depression in a genome-wide association study. Functional annotation of differentially expressed genes revealed an enrichment of immune response-related biological processes. Additional analysis of genes associated with changes in depressive symptoms from recruitment to 2 months postpartum identified 66 genes significant at an FDR of 5%. Of these genes, 33 genes were also associated with depressive symptoms at 2 months postpartum. Comparing the results with previous studies, we observed that 15.4% of genes associated with PPD in this study overlapped with 700 core maternal genes that showed significant gene expression changes across multiple brain regions (P = 7.9e-05) and 29–53% of the genes were also associated with estradiol changes in a pharmacological model of depression (P values range = 1.2e-4–2.1e-14). In conclusion, we identified novel genes and validated genes previously associated with oestrogen sensitivity in PPD. These results point towards the role of an altered immune transcriptomic landscape as a vulnerability factor for PPD.


2021 ◽  
Vol 9 (2) ◽  
pp. 240
Author(s):  
Bruno Cavadas ◽  
Marina Leite ◽  
Nicole Pedro ◽  
Ana C. Magalhães ◽  
Joana Melo ◽  
...  

The continuous characterization of genome-wide diversity in population and case–cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Bernhardt ◽  
Marcus Dittrich ◽  
Rabih El-Merahbi ◽  
Antoine-Emmanuel Saliba ◽  
Tobias Müller ◽  
...  

AbstractPaternal obesity is known to have a negative impact on the male’s reproductive health as well as the health of his offspring. Although epigenetic mechanisms have been implicated in the non-genetic transmission of acquired traits, the effect of paternal obesity on gene expression in the preimplantation embryo has not been fully studied. To this end, we investigated whether paternal obesity is associated with gene expression changes in eight-cell stage embryos fathered by males on a high-fat diet. We used single embryo RNA-seq to compare the gene expression profile of embryos generated by males on a high fat (HFD) versus control (CD) diet. This analysis revealed significant upregulation of the Samd4b and Gata6 gene in embryos in response to a paternal HFD. Furthermore, we could show a significant increase in expression of both Gata6 and Samd4b during differentiation of stromal vascular cells into mature adipocytes. These findings suggest that paternal obesity may induce changes in the male germ cells which are associated with the gene expression changes in the resulting preimplantation embryos.


2020 ◽  
Vol 14 ◽  
Author(s):  
Mette Soerensen ◽  
Dominika Marzena Hozakowska-Roszkowska ◽  
Marianne Nygaard ◽  
Martin J. Larsen ◽  
Veit Schwämmle ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5798
Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


2017 ◽  
Vol 117 (04) ◽  
pp. 758-768 ◽  
Author(s):  
Sebastian Armasu ◽  
Bryan McCauley ◽  
Iftikhar Kullo ◽  
Hugues Sicotte ◽  
Jyotishman Pathak ◽  
...  

SummaryTo identify novel single nucleotide polymorphisms (SNPs) associated with venous thromboembolism (VTE) in African-Americans (AAs), we performed a genome-wide association study (GWAS) of VTE in AAs using the Electronic Medical Records and Genomics (eMERGE) Network, comprised of seven sites each with DNA biobanks (total ~39,200 unique DNA samples) with genome-wide SNP data (imputed to 1000 Genomes Project cosmopolitan reference panel) and linked to electronic health records (EHRs). Using a validated EHR-driven phenotype extraction algorithm, we identified VTE cases and controls and tested for an association between each SNP and VTE using unconditional logistic regression, adjusted for age, sex, stroke, site-platform combination and sickle cell risk genotype. Among 393 AA VTE cases and 4,941 AA controls, three intragenic SNPs reached genome-wide significance: LEMD3 rs138916004 (OR=3.2; p=1.3E-08), LY86 rs3804476 (OR=1.8; p=2E-08) and LOC100130298 rs142143628 (OR=4.5; p=4.4E-08); all three SNPs validated using internal cross-validation, parametric bootstrap and meta-analysis methods. LEMD3 rs138916004 and LOC100130298 rs142143628 are only present in Africans (1000G data). LEMD3 showed a significant differential expression in both NCBI Gene Expression Omnibus (GEO) and the Mayo Clinic gene expression data, LOC100130298 showed a significant differential expression only in the GEO expression data, and LY86 showed a significant differential expression only in the Mayo expression data. LEMD3 encodes for an antagonist of TGF-β-induced cell proliferation arrest. LY86 encodes for MD-1 which down-regulates the pro-inflammatory response to lipopolysaccharide; LY86 variation was previously associated with VTE in white women; LOC100130298 is a non-coding RNA gene with unknown regulatory activity in gene expression and epigenetics.Supplementary Material to this article is available online at www.thrombosis-online.com.


Sign in / Sign up

Export Citation Format

Share Document