Human Natural Killer Cells Are Able to Kill Aspergillus Fumigatus but Not Via the Perforin - Granzyme Pathway.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1640-1640 ◽  
Author(s):  
Maria Bouzani ◽  
Michael Ok ◽  
Oliver Kurzai ◽  
Hermann Einsele ◽  
Juergen Loeffler

Abstract Abstract 1640 Poster Board I-666 Introduction Natural killer (NK) cells are CD3- CD56+ lymphocytes demonstrating confirmed cytotoxicity against neoplastic and virus infected host cells. Increasing data provide evidence of a direct NK cell effect against extracellular pathogens, such as bacteria, parasites and yeasts, but there is a relative lack of data on their interaction with filamentous fungus and especially with Aspergillus fumigatus. Aspergillus is an omnipresent mold, living in close vicinity with humans, being constantly inhaled in the lungs and thereafter cleared by the innate immune system. Otherwise harmless for healthy people, it is at the origin of invasive Aspergillosis (IA), an extremely devastating disease for immunocompromised subjects. Host's innate immune system controls Aspergillus growth through a complex system of potent effector cells, mediating their antifungal activity mainly by phagocytosis. Our study aims to shed light for the first time on the direct interaction between human NK cells, mediators of extracellular cytotoxicity, and Aspergillus. Methods NK cells were isolated after magnetic depletion of the peripheral blood of healthy volunteers and they were used after 24h priming with 500 U/ml recombinant interleukin – 2 rhIL-2. To determine gene expression and cytokine release of interferon gamma (IFNg) and Tumor Necrosis Factor- a (TNF-a), NK cells were stimulated for 0, 3, 6 and 12h with different morphologies of Aspergillus: conidia and germlings. To evaluate the lethal impact of NK cells on Aspergillus, plate killing assays were performed at 0, 3 and 6h time points. To illustrate the role of antibody dependent cellular cytotoxicity, ADCC a monoclonal IgG antibody, against germlings, was tested. Transwell permeable membranes, with pores of 0,4 μm, prohibiting the direct contact of cells placed on their opposite sides, but allowing the free circulation of molecules, were used to estimate the effect of cell-fungal contact. To investigate the cytotoxic mechanism involved, NK cells were depleted from perforin and granzymes by treatment with strontium chloride and they had their death ligands, TNF- related apoptosis- inducing ligand (TRAIL) and FasL, neutralised by means of blocking antibodies. The release of cytotoxic granules was estimated by the NK cell surface expression of the marker of degranulation CD107a/b. Results Observing the in vitro interaction of NK cells with Aspergillus, fungal germinated morphologies (germlings) showed to be highly immunogenic towards NK cells, compared to conidia, inducing the gene expression and cytokine release of Th1 immune mediators such as IFN-g (p <0,05) and TNF-a.(p <0,1). NK cells demonstrated also a strong lethal impact against germlings (p <0,05). Moreover, the presence of antifungal antibody further potentiated both immunoregulatory and cytotoxic activities. Investigating the means engaged by NK cells to perceive and kill Aspergillus, direct effector–pathogen cell to cell contact was revealed as prerequisite; when this condition was not present there was neither cytokine induction, nor fungal damage (p <0,05). This finding was confirmed by the lack of surface expression of CD107a/b, after NK cell- Aspergillus co-incubation. Investigating the killing pathway we compared the effectiveness of perforin – granzymes depleted NK cells to this of intact cells against germlings and it was found equivalent (p =NS). In a similar way, neutralisation of TRAIL and FasL ligands did not alter the cytotoxic ability of NK cells towards Aspergillus. Conclusion Our data show that human NK cells are stimulated in vitro by Aspergillus germlings, which triggers an immunoregulatory Th1 orientated response and causes important fungal killing. NK cells are not aware of conidia, they are not stimulated by them and par consequence they do not kill them. Finally, we showed that NK cells do not mediate their cytotoxic effect via perforin – granzymes pathway, neither through the engagement of TRAIL, FasL death receptors, suggesting that another pathway is involved in NK cell – Aspergillus fumigatus interplay. We suggest that further investigation of these striking findings might offer a potent immunotherapeutic tool against IA. Disclosures No relevant conflicts of interest to declare.

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 394
Author(s):  
Calum Forrest ◽  
Ariane Gomes ◽  
Matthew Reeves ◽  
Victoria Male

Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.


2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Liat Dassa ◽  
Einat Seidel ◽  
Esther Oiknine-Djian ◽  
Rachel Yamin ◽  
Dana G. Wolf ◽  
...  

ABSTRACT Natural killer (NK) cells are lymphocytes of the innate immune system capable of killing hazardous cells, including virally infected cells. NK cell-mediated killing is triggered by activating receptors. Prominent among these is the activating receptor NKG2D, which binds several stress-induced ligands, among them major histocompatibility complex (MHC) class I-related chain A (MICA). Most of the human population is persistently infected with human cytomegalovirus (HCMV), a virus which employs multiple immune evasion mechanisms, many of which target NK cell responses. HCMV infection is mostly asymptomatic, but in congenitally infected neonates and in immunosuppressed patients it can lead to serious complications and mortality. Here we discovered that an HCMV protein named UL148A whose role was hitherto unknown is required for evasion of NK cells. We demonstrate that UL148A-deficient HCMV strains are impaired in their ability to downregulate MICA expression. We further show that when expressed by itself, UL148A is not sufficient for MICA targeting, but rather acts in concert with an unknown viral factor. Using inhibitors of different cellular degradation pathways, we show that UL148A targets MICA for lysosomal degradation. Finally, we show that UL148A-mediated MICA downregulation hampers NK cell-mediated killing of HCMV-infected cells. Discovering the full repertoire of HCMV immune evasion mechanisms will lead to a better understanding of the ability of HCMV to persist in the host and may also promote the development of new vaccines and drugs against HCMV. IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen which is usually asymptomatic but that can cause serious complications and mortality in congenital infections and in immunosuppressed patients. One of the difficulties in developing novel vaccines and treatments for HCMV is its remarkable ability to evade our immune system. In particular, HCMV directs significant efforts to thwarting cells of the innate immune system known as natural killer (NK) cells. These cells are crucial for successful control of HCMV infection, and yet our understanding of the mechanisms which HCMV utilizes to elude NK cells is partial at best. In the present study, we discovered that a protein encoded by HCMV which had no known function is important for preventing NK cells from killing HCMV-infected cells. This knowledge can be used in the future for designing more-efficient HCMV vaccines and for formulating novel therapies targeting this virus.


2002 ◽  
Vol 83 (11) ◽  
pp. 2709-2716 ◽  
Author(s):  
Dominique Markine-Goriaynoff ◽  
Xavier Hulhoven ◽  
César L. Cambiaso ◽  
Philippe Monteyne ◽  
Thérèse Briet ◽  
...  

Early after infection, lactate dehydrogenase-elevating virus (LDV) alters the immune system by polyclonally activating B lymphocytes, which leads to IgG2a-restricted hypergammaglobulinaemia, and by suppressing the secretion of Th2 cytokines. Considering that these alterations may involve cells of the innate immune system and cytokines such as interferon-gamma (IFN-γ), we analysed the effect of LDV on natural killer (NK) cells. Within a few days of infection, a strong and transient NK cell activation, characterized by enhanced IFN-γ message expression and cytolysis, was observed. LDV triggered a large increase in serum IFN-γ levels. Because NK cells and IFN-γ may participate in the defence against virus infection, we analysed their possible role in the control of LDV titres with a new agglutination assay. Our results indicate that neither the activation of NK cells nor the IFN-γ secretion affect the early and rapid virus replication that follows LDV inoculation.


2021 ◽  
Vol 8 (6) ◽  
pp. 110
Author(s):  
Nathalie Meijerink ◽  
Jean E. de Oliveira ◽  
Daphne A. van Haarlem ◽  
Guilherme Hosotani ◽  
David M. Lamot ◽  
...  

Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.


2008 ◽  
Vol 76 (4) ◽  
pp. 1719-1727 ◽  
Author(s):  
Semih Esin ◽  
Giovanna Batoni ◽  
Claudio Counoupas ◽  
Annarita Stringaro ◽  
Franca Lisa Brancatisano ◽  
...  

ABSTRACT Our previous studies demonstrated that Mycobacterium bovis bacillus Calmette-Guérin (BCG) can directly interact with human NK cells and induce the proliferation, gamma interferon production, and cytotoxic activity of such cells without the need for accessory cells. Thus, the aim of the present study was to identify the putative receptor(s) responsible for the recognition of BCG by human NK cells and potentially involved in the activation of NK cells. To this end, we first investigated the surface expression of three NK cell-activating receptors belonging to the natural cytoxicity receptor (NCR) family on highly purified human NK cells upon in vitro direct stimulation with BCG. An induction of the surface expression of NKp44, but not of NKp30 or NKp46, was observed after 3 and 4 days of in vitro stimulation with live BCG. The NKp44 induction involved mainly a particular NK cell subset expressing the CD56 marker at high density, CD56bright. In order to establish whether NKp44 could directly bind to BCG, whole BCG cells were stained with soluble forms of the three NCRs chimeric for the human immunoglobulin G (IgG) Fc fragment (NKp30-Fc, NKp44-Fc, NKp46-Fc), followed by incubation with a phycoerythrin (PE)-conjugated goat anti-human IgG antibody. Analysis by flow cytometry of the complexes revealed a higher PE fluorescence intensity for BCG incubated with NKp44-Fc than for BCG incubated with NKp30-Fc, NKp46-Fc, or negative controls. The binding of NKp44-Fc to the BCG surface was confirmed with immunogold labeling using transmission electron microscopy, suggesting the presence of a putative ligand(s) for human NKp44 on the BCG cell wall. Similar binding assays performed on a number of gram-positive and gram-negative bacteria revealed a pattern of NKp44-Fc binding restricted to members of the genus Mycobacterium, to the mycobacterium-related species Nocardia farcinica, and to Pseudomonas aeruginosa. Altogether, the results obtained indicate, for the first time, that at least one member of the NCR family (NKp44) may be involved in the direct recognition of bacterial pathogens by human NK cells.


2019 ◽  
Vol 94 ◽  
pp. 819-832
Author(s):  
Cindy Campoverde ◽  
Douglas J. Milne ◽  
Christopher J. Secombes ◽  
Alicia Estévez ◽  
Enric Gisbert ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3647-3653 ◽  
Author(s):  
Todd A. Fehniger ◽  
William E. Carson ◽  
Ewa Mrózek ◽  
Michael A. Caligiuri

Abstract The administration of low dose interleukin-2 (IL-2) results in a selective expansion of natural killer (NK) cells in vivo, and promotes the differentiation of NK cells from hematopoietic precursor cells in vitro. We have previously shown that stem cell factor (SCF ), the ligand to the c-kit tyrosine kinase receptor, enhances IL-2–induced NK cell proliferation and differentiation in vitro. Here, we investigated the effects of SCF plus IL-2 delivered to mice in vivo. Eight-week-old C57BL/6 mice were treated with a continuous subcutaneous infusion of IL-2 (1 × 104 IU/d) plus a daily intraperitoneal dose of SCF (100 μg/kg/d), IL-2 alone, SCF alone, or vehicle alone for 8 weeks. The in vivo serum concentration of IL-2 ranged between 352 ± 12.0 pg/mL and 606 ± 9.0 pg/mL, achieving selective saturation of the high affinity IL-2 receptor, while the peak SCF serum concentration was 296 ± 13.09 ng/mL. Alone, the daily administration of SCF had no effect on the expansion of NK cells. The continuous infusion of IL-2 alone did result in a significant expansion of NK1.1+CD3− cells compared to mice treated with placebo or SCF. However, mice treated with both SCF and IL-2 showed an increase in the absolute number of NK cells that was more than twofold that seen with IL-2 alone, in the spleen (P ≤ .005), bone marrow (P ≤ .025), and blood (P < .05). NK cytotoxic activity against YAC-1 target cells was significantly higher for mice treated with SCF plus IL-2, compared to mice treated with IL-2 alone (P ≤ .0005). Interferon-γ (IFN-γ) production in cytokine-activated splenocytes was also greater for the SCF plus IL-2 group, over IL-2 treatment alone (P ≤ .01). The effect of SCF plus IL-2 on NK cell expansion was likely mediated via NK cell precursors, rather than mature NK cells. In summary, we provide the first evidence that SCF can significantly enhance expansion of functional NK cells induced by the prolonged administration of low dose IL-2 in vivo. Since the NK cell is a cytotoxic innate immune effector and a potent source of IFN-γ, this therapeutic strategy for NK cell expansion may serve to further enhance innate immune surveillance against malignant transformation and infection in the setting of cancer and/or immunodeficiency.


2008 ◽  
Vol 89 (3) ◽  
pp. 751-759 ◽  
Author(s):  
April Keim Parker ◽  
Wayne M. Yokoyama ◽  
John A. Corbett ◽  
Nanhai Chen ◽  
R. Mark L. Buller

Natural killer (NK) cells are known for their ability to lyse tumour cell targets. Studies of infections by a number of viruses, including poxviruses and herpesviruses, have demonstrated that NK cells are vital for recovery from these infections. Little is known of the ability of viruses to infect and complete a productive replication cycle within NK cells. Even less is known concerning the effect of infection on NK cell biology. This study investigated the ability of ectromelia virus (ECTV) to infect NK cells in vitro and in vivo. Following ECTV infection, NK cell gamma interferon (IFN-γ) production was diminished and infected cells ceased proliferating and lost viability. ECTV infection of NK cells led to early and late virus gene expression and visualization of immature and mature virus particles, but no detectable increase in viable progeny virus. It was not unexpected that early gene expression occurred in infected NK cells, as the complete early transcription system is packaged within the virions. The detection of the secreted early virus-encoded immunomodulatory proteins IFN-γ-binding protein and ectromelia inhibitor of complement enzymes (EMICE) in NK cell culture supernatants suggests that even semi-permissive infection may permit immunomodulation of the local environment.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
George Sakoulas ◽  
Monika Kumaraswamy ◽  
Armin Kousha ◽  
Victor Nizet

ABSTRACT It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo.


Sign in / Sign up

Export Citation Format

Share Document