Association of Asparagine Synthetase Expression and Sensitivity to L-Asparaginase in Cell Lines and Primary Pediatric Acute Lymphoblastic Leukemia Samples.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2738-2738
Author(s):  
Ivana Hermanova ◽  
Jan Trka ◽  
Julia Starkova

Abstract Abstract 2738 Poster Board II-714 L-Asparaginase (L-Asp) is an important component in the combined chemotherapy for childhood acute lymphoblastic leukemia (ALL). Administration of L-Asp leads to depletion of plasmatic asparagine and consequently causes loss of intracellular asparagine. As a non-essential amino acid, asparagine is synthesized from aspartate and glutamine by asparagine synthetase (ASNS). Primary ALL cells are believed to have low ASNS expression and therefore to be sensitive to asparagine depletion. Although increased ASNS level was shown to be connected with L-Asp resistance the exact relationship between ASNS expression and L-Asp sensitivity is not clear. We and others have previously shown TEL/AML1[+] ALL blasts express more ASNS mRNA than TEL/AML[-] do although primary TEL/AML[+] cell are in vitro more sensitive to treatment with L-Asp. Hutson et al (1997) showed that amino acid deprivation led to increased expression of ASNS on mRNA and protein level as well as to increased biological activity. On the other hand, Nan Su et al described negative correlation between L-Asp sensitivity and ASNS protein rather than mRNA levels. Therefore, in our studies we concentrated on protein expression of ASNS in patients' samples. So far, there has been no reproducible published data on ASNS protein detection by Western blot in primary patients' samples. Despite using 3 different antibodies and precise optimization we were not able to detect ASNS protein in patients' samples in contrast to cell lines. Transcripts' levels confirmed significantly lower (2 log) expression of ASNS in patients' leukemic cells compared to leukemic cell lines. Therefore, for further studies on gene and protein relation we had to rely on cell lines as a model. We detected ASNS gene expression and ASNS protein content in four ALL cell lines: REH (TEL/AML1[+]), UOCB6 (TEL/AML1[+]), NALM6 (TEL/PDGFRB[+]) and RS4;11 (MLL/AF4[+]). ASNS mRNA levels were in accord with sensitivity to L-Asp. UOCB6 as the most resistant cell line (IC50=0.04U/ml) had the highest expression of ASNS (normalized ASNS, nASNS=4.946), then NALM6 (IC50=0.01U/ml; nASNS=1.8), REH (IC50=0.6.10−4; nASNS=1.176) and RS4;11 (IC50<0.3.10−4; nASNS=0.024). ASNS protein levels significantly differed through passages in REH cells, likely due to rapid turnover. For the remaining three cell lines L-Asp sensitivity correlated also with protein content. We have previously shown that different basal expression levels do not affect short-term dynamics of ASNS expression after L-Asp administration. Here we were interested to see the changes of sensitivity to L-Asp using gradient silencing of ASNS by RNAi in two cell lines with different basal expression: REH cell line with intermediate ASNS mRNA expression and RS4;11 cell line with very low mRNA expression. Gradient silencing revealed that L-Asp sensitivity correlated with ASNS expression till 50% decrease; further silencing did not potentiate the effect. The same response was seen in both cell lines despite different basal ASNS expression and sensitivity to L-Asp. The ASNS is glutamine dependent enzyme therefore we also studied expression of glutamate dehydrogenase (GDH), an enzyme necessary for glutamine synthesis. We found significantly lower GDH mRNA expression in primary TEL/AML1[+] blasts in comparison with TEL/AML[-] blasts (p=0.019), which might lead to deficiency of glutamine in these cells and consequently higher sensitivity to L-Asp. Accordingly, silencing of ASNS in REH tended to increase GDH expression levels. Our data confirm that generally, both ASNS mRNA and protein expression inversely correlate with the sensitivity to L-Asp in the cell lines. However, it may be misleading to draw conclusions for the patients' cells directly from the results obtained in cell line models. The expression patterns of ASNS in primary leukemic cells differ even from those of genotypically identical cell lines. The control of basal levels of ASNS in leukemic cells remains to be elucidated. Our results implicate an important role of GDH and glutamine metabolic pathway in the regulation of ASNS activity. This work was supported by MSM0021620813 and GAUK 7835. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 107 (11) ◽  
pp. 4244-4249 ◽  
Author(s):  
Inge M. Appel ◽  
Monique L. den Boer ◽  
Jules P. P. Meijerink ◽  
Anjo J. P. Veerman ◽  
Nathalie C. M. Reniers ◽  
...  

Abstract l-asparaginase (l-Asp) is an effective drug for treatment of children with acute lymphoblastic leukemia (ALL). The effectiveness is generally thought to result from a rapid depletion of asparagine in serum and cells. Asparagine synthetase (AS) opposes the action of l-Asp by resynthesis of asparagine. In vitro, resistance to l-Asp has been associated with up-regulation of AS mRNA expression. We monitored AS mRNA levels in leukemic cells before and during 5 days after intravenous administration of 1000 IU/m2 pegylated l-asparaginase (PEG-Asp) in a therapeutic window in children with ALL at initial diagnosis. Within 24 hours, AS mRNA levels increased by 3.5-fold and remained stable in the following 4 days. Baseline and l-Asp–induced expression levels of AS did not differ between clinically good, intermediate, and poor responders to PEG-Asp. No significant difference of AS mRNA up-regulation was found between precursor B- and T-ALL or between hyperdiploids, TEL/AML1 rearranged ALL or absence of genetic abnormalities. In 3 of 12 patients with T-ALL even a slight down-regulation of AS mRNA expression upon l-Asp exposure was found. In conclusion, although l-Asp exposure induces the expression of AS mRNA, the up-regulated gene expression does not correlate with an early clinical poor response to this drug in children with ALL.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1916-1923 ◽  
Author(s):  
HJ Buhring ◽  
I Sures ◽  
B Jallal ◽  
FU Weiss ◽  
FW Busch ◽  
...  

The class I receptor tyrosine kinase (RTK) HER2 is an oncoprotein that is frequently involved in the pathogenesis of tumors of epithelial origin. Here we report mRNA expression in peripheral blood and bone marrow cells from healthy donors in hematopoietic cell lines and leukemic blasts from patients with acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), chronic lymphoblastic leukemia (CLL), and chronic myeloid leukemia (CML). However, cell surface expression of HER2 protein (p185HER2) was found exclusively on a subset of leukemic cells of the B-lymphoblastic lineage. p185HER2 expression was found on blasts in 2 of 15 samples from infants, 9 of 19 samples from adult patients with C-ALL (CD19+CD10+), and 1 of 2 samples from patients with pro-B ALL (CD19+CD10-), whereas none of the leukemic cells from patients with AML (0/30), T-ALL (0/7), CLL (0/5) (CD19+CD5+), or CML in chronic and accelerated phase (0/5) or in blast crisis with myeloid differentiation (0/14) were positive for p185HER2. However, cells from 3 of 4 patients with CML in B-lymphoid blast crisis (CD19+CD10+) expressed high levels of p185HER2, which was also found on the surface of the CML-derived B-cell lines BV-173 and Nalm-1. Our study shows p185HER2 expression on malignant cells of hematopoietic origin for the first time. Aberrant expression of this oncogenic receptor tyrosine kinase in hematopoietic cell types may be an oncogenic event contributing to the development of a subset of B- lymphoblastic leukemias.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 995-995
Author(s):  
Marrit Meier ◽  
Monique L. Den Boer ◽  
Jules P.P. Meijerink ◽  
Monique Passier ◽  
Elisabeth R. Van Wering ◽  
...  

Abstract Children with T-lineage Acute Lymphoblastic Leukemia (T-ALL) have a higher relapse-risk and are in-vitro more resistant to therapeutic drugs compared to ALL patients with a precursor-B phenotype. Cellular resistance to anti-cancer agents has previously shown to be associated with failure of P53 family member signaling by abrogation of P53 function due to loss-of-function mutations or dominant-negative inhibition by isoforms of P73 lacking (part of) the N-terminal transactivation domain (P73ΔEX2, P73ΔEX2/3, ΔN-P73 and ΔN’-P73). Since p53 mutations are not commonly found in T-ALL, we investigated the expression levels of p73 splice variants in relation to drug resistance in children with T-ALL. Splice variants were quantitatively measured at the mRNA level in leukemic cells of 55 T-ALL patients and mononuclear cells of 12 non-leukemic controls. TA-p73 (transactivation competent), p73Δex2, p73Δex2/3, ΔN-p73 and ΔN’-p73 were all found to be present at a relatively higher mRNA level in T-ALL patients than controls (P < 0.05 for all), suggesting that expression of the TP73 gene is deregulated in T-ALL. Resistance of T-ALL cells to the DNA damaging drug daunorubicin correlated with mRNA levels of the dominant-negative variants of p73, i.e. ΔN-p73 and ΔN’-p73 (Rs = 0.38, P = 0.03). In contrast, expression of none of the variants, including ΔN-p73 and ΔN’-p73, was related to resistance of T-ALL cells to non-DNA damaging drugs (prednisolone, vincristine and L-asparaginase). In conclusion, high expression of ΔN-p73 and ΔN’-p73 variants possibly contributes to resistance to DNA damaging drugs in childhood T-ALL.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2801-2801
Author(s):  
Stefanie V. Junk ◽  
Melchior Lauten ◽  
Gunnar Cario ◽  
Nicole Wittner ◽  
Martin Schrappe ◽  
...  

Abstract The response to initial glucocorticoid (gc) therapy in childhood acute lymphoblastic leukemia (ALL) reliably predicts the response to multiagent chemotherapy. In a recent study, we identified the valosin-containing protein (VCP) as a part of the ubiquitin proteasome degradation pathway (UPDP) as one of the proteins overexpressed in prednisone poor responder (PPR) patients. Therefore, we investigated whether treatment of ALL cell lines with the proteasome inhibitor bortezomib acted synergistically with glucocorticoid treatment. Human B-cell precursor leukemic cell lines MHH cALL 2 (PPR) and MHH cALL 3 (PGR) were treated with prednisone(6.3μM) as baseline and also with different concentrations of the proteasome inhibitor bortezomib for 96hours (h). To study drug effects, cells were sampled every 24h for immunofluorescence (IF) staining, protein and RNA extraction, viability (Trypan blue, WST-1) and apoptosis assays. Western blot analyses using an anti-p97 antibody were performed on whole cell lysates (wcl) and fractions and separated by differential detergent fractionation. VCP RNA expression was analyzed by real-time PCR. Single bortezomib treatment with 3nM or higher concentrations led to a significant decline in vitality of both cell lines. Within 24h, the PPR cell line lost about half and the PGR about one-fourth of their vitality. In combination with prednisone, 1.5nM bortezomib reduced the vitality by about 50% within 96h for both cell lines. Combining both drugs decreased the vitality rate by about 10% in the PPR cell line, whereas the PGR cells showed no decrease compared to single gc treatment. In FACS analyses, stages of different quantities of apoptosis were detected in PPR and PGR cells. PPR cells treated with both drugs showed a strong increase of necrotic cells at 24h. PGR cells started with an accession of apoptotic cells and initially had no necrotic cells, but started to rise from 48h on. We hence propose that the PPR cells react more quickly to the combined therapy. Under single gc treatment, VCP RNA expression increased in the PPR cells to a maximum of about 1.8- and in PGR cells to 1.5-fold. In PGR cells treated only with 1.5nM or 3nM bortezomib, VCP RNA rose to 1.4- and 2-fold respectively. Drug combination led to a 1.4-fold increase of VCP RNA in PPR compared to untreated cells, whereas RNA was reduced compared to single gc-treated cells. Protein levels of VCP in PPR cells remained high during drug treatment. VCP increased to a maximum of 1.6-fold in the cytosol of PGR cells, using bortezomib only. In the combination experiments, the amount doubled within 48h and thence decreased to initial levels. Single gc treatment caused a VCP increase to 1.5-fold within 24h. In the wcl, we found the VCP levels for the PGR cells converted to the cytosolic patterns. The results of IF staining supported the different VCP concentrations and exposed formation of aggresome-like complexes in the PPR cell line. The results of this study suggest that the multiagent chemotherapy resistance is indicated by differentially expressed VCP and related to the deregulation of the UPDP. Using inhibitors appears to chemisensitize the PPR for gc treatment. Therefore, drug targeting the proteasome, as in other hematological cancer therapies, might improve the overall therapy outcome.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2529-2529
Author(s):  
Nan Jiang ◽  
Zhenhua Li ◽  
Grace Shimin Koh ◽  
Yi Lu ◽  
Shirley K.Y. Kham ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer with excellent treatment outcome where >80% are cured. However, relapse and therapy-related toxicities limit further improvements and greatly increase the cost of therapy. Vincristine (VCR) is cheap, well tolerated, and highly effective. Using VCR optimally will help improve the cost-benefit ratio favorably by allowing us to reduce toxicities like infections from myelosuppression and yet improving cure. The highly successful BFM-ALL treatment backbone starts with a single intrathecal methotrexate on Day 1 followed by 7 days of oral prednisolone (PRED). The persistence of absolute blasts count >1,000/µL at Day 8 (D8), known as PRED poor response, confers a significantly poorer treatment outcome. To avoid seeding the CNS with leukemia from traumatic taps, the new Ma-Spore ALL 2010 treatment protocol, omitted intrathecal methotrexate at Day 1 and replaced with VCR at Day 0. By June 2013, a total of 133 patients have been enrolled. We found that the number of poor PRED responders was halved from the historical 9.5% in the previous Ma-Spore ALL 2003 study (Yeoh et al. J Clin Oncol 2013) to only 4.7% of patients in the ALL 2010 study. In addition, the percentage of MRD standard risk patients (Day 33 blast count ≤1x10-4) increased from 38.9% in the Ma-Spore ALL 2003 to 51.8% in the Ma-Spore ALL 2010 study (P<0.001). The 2-year event-free survival (EFS) for good and poor D8 response patients under the Ma-Spore ALL 2010 trial remained similar to the ALL 2003 study despite only half the number of PRED poor responders (Fig. 1). These data taken together suggests that VCR and PRED combination is highly synergistic and can improve early treatment response. We investigated VCR and PRED combination in PRED and VCR-resistant (VCR-R) cell lines. Specifically, REH cell line is intrinsically resistant to PRED in vitro because of a mutation in its glucocorticoid receptor. We exposed the REH cell line to increasing concentrations of VCR over 6 months and generated a VCR resistant REH cell line (Fig. 2). This VCR-R REH cell line is resistant to both PRED or VCR when exposed individually in vitro. However when exposed to both PRED and VCR in combination, only 30% of the resistant cells survived (P<0.01). We found that the drug efflux transporter multi-drug resistance protein 1 (MDR1) was preferentially highly expressed in our VCR-R cell line models. To determine if the highly expressed MDR1 is responsible for treatment resistance, we exposed the VCR-R cell lines to VCR, verapamil (an MDR1 inhibitor) and combination of both VCR and verapamil. The combination of VCR and verapamil increased the G2 cell cycle arrest by 3- folds compared to when VCR was used alone (Fig. 3), supporting the role of MDR1 in treatment resistance. Interestingly we also found that the combination of VCR and PRED led to a decrease in levels of MDR1 expression by western blot, suggesting that depletion of MDR1 may be a mechanism through which VCR and PRED combination therapy enhances leukemic cell killing. We also investigated microenvironment-mediated resistance to VCR and PRED using mesenchymal stromal cells (MSC) co-culture systems. It was found that after co-culture with MSC or in conditional medium containing soluble factors secreted by MSC, leukemic cells were resistant to VCR and PRED mono-treatment, but the resistance was abrogated after combinatorial therapy. In conclusion, VCR in combination with PRED improves D8 peripheral blood treatment response during early induction in our Ma-Spore 2010 trial. This synergistic combination results from its ability to reverse resistance from intrinsic overexpression of MDR1 in resistant leukemia cells and decrease microenvironment-contributed resistance by mesenchymal cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2752-2752
Author(s):  
Kinjal Shah ◽  
Julhash U. Kazi

Background: Acute lymphoblastic leukemia (ALL) is the most frequent pediatric malignancy, of which T- cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset. Due to the advent of new therapies, T-ALL now has a 5-year event-free survival (EFS) rate exceeding 85%. However, some patients still relapse and display resistance to therapy. Moreover, adverse side-effects of intensive chemotherapy worsen the duration of treatment. Therefore, we still need to improve our current treatment beyond that of the chemotherapeutic approaches. It has been shown that the maturation stage of T-ALL decides its dependency on Bcl-2/Bcl-xL. The immature early T cell progenitor ALL (ETP-ALL) rely on Bcl-2 for their survival while all the other stages of T-ALL and primary patient samples depend on Bcl-xL. Bcl-2 inhibitors have thus shown to display promising antitumor activity against ETP-ALL, a subgroup with a high risk of relapse, but with a variable response across these patients. Therefore, there is a need for predictive biomarkers and further investigation towards finding a combination of drugs for the treatment of these patients. Methodology & Aim: We screened 10 different T-ALL cell lines with a combination of Bcl-2 inhibitor and a panel of 378 protein kinase inhibitors and identified polo-like kinase inhibitor as a promising candidate. We thus aimed to study the combined effect of Bcl-2 and PLK1 inhibition in a panel of T-ALL cell lines and in a PDX model of chemo-resistant childhood T-ALL. We also investigated the underlying mechanism of drug synergy by various biochemical assays. Results: Cell viability of 14 T-ALL cell lines was determined after being subjected to Bcl-2 inhibitor (ABT-199) and PLK1 inhibitor (BI-6727). All cell lines responded well to BI6727 with an EC50 of less than 70nM. However, they showed differential response to ABT199 with only 3 cell lines being sensitive with an EC50 of less than 40nM. The mRNA levels of Bcl-2, Bcl-xL and PLK 1, 2, 3 and 4 were determined by qRT-PCR. PLK1 was found to be highly expressed in all the cell lines as compared to the rest of the 3 PLK family proteins. ABT-199-sensitive cell lines showed lower Bcl-xL mRNA levels irrespective of their Bcl-2 expression, and displayed synergy with BI-6727. A higher degree of apoptosis was also observed in the combination treatment as compared to a single drug. Immunoblot analysis revealed cleavage of PARP1 and lower levels of c-Myc and MCL1 expression in the presence of both ABT-199 and BI-6727. Conclusions: Upregulation of the anti-apoptotic BCL2 family members is one of the canonical ways for cancer cells to escape apoptosis. In the past years, several highly selective and potent BCL2 inhibitors have been developed and showed promising efficacy in various cancers. We found that the sensitivity of T-ALL cell lines to ABT-199 is largely determined by the lower levels of Bcl-xL expression. Furthermore, ABT-199 displays synergy with the PLK inhibitor. T-ALL cell lines predominantly express PLK1 and thus the combinatorial effect of ABT-199 and BI-6727 is mediated through the pharmacological inhibition of both BCL2 and PLK1. Currently, we are generating iRFP-expressing T-ALL cell lines which will be used to check drug efficacy in vivo. Furthermore, we have collected chemo-resistant PDX cell lines which will be used to verify the cell line data. Besides its role in cell cycle control, we still have very limited knowledge about the function of PLK1 in leukemia. Thus, studying its role in T-ALL cell lines by knocking down PLK1 with CRISPR/Cas9 technology will provide an important insight. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 62-62
Author(s):  
Roel Polak ◽  
Marc B. Bierings ◽  
Cindy S. van der Leije ◽  
Rosanna E.S. van den Dungen ◽  
Mathijs A. Sanders ◽  
...  

Abstract Background: Translocation t(12;21), resulting in the ETV6-RUNX1 fusion protein, is present in 25% of pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Despite the favorable prognostic parameters of this B-ALL subgroup, relapse and resistance to chemotherapeutics occur and treatment-induced side effects are considerable. The molecular mechanisms underlying ETV6-RUNX1-driven leukemia are largely unknown. Increased knowledge of these mechanisms is essential to develop novel therapeutic strategies to selectively target ETV6-RUNX1-positive leukemia. Objectives: This study aims to identify and target the molecular drivers behind ETV6-RUNX1-positive BCP-ALL. Results: Gene expression profiling of leukemic blasts of 654 ALL patients revealed that the class III PI3-kinase Vps34, an important regulator of autophagy, was exclusively up-regulated in ETV6-RUNX1-positive compared to ETV6-RUNX1-negative BCP-ALL patients (2.7-fold; p ≤ 10-30). In addition, ectopic expression of ETV6-RUNX1 in cord blood-derived hematopoietic progenitor cells (CB-HPCs) significantly induced expression of Vps34 1.3-fold already 40 hours after transduction (p ≤ 0.05). This suggests that the Vps34-autophagy pathway is activated by ETV6-RUNX1, which may mechanistically explain the leukemogenic and pro-survival properties ascribed to ETV6-RUNX1. In correspondence, Ingenuity Pathway Analysis (IPA) predicted a pro-survival and pro-proliferative phenotype in ETV6-RUNX1 transduced CB-HPCs and highlighted a network of up-regulated transcription factors, including HEY1, EGR1, GATA1 and GATA2 (2 – 25-fold up-regulation; p ≤ 0.05). Luciferase reporter assays revealed that not only the ETV6-RUNX1 fusion protein, but also the ETV6-RUNX1-induced target genes HEY1, EGR1 and GATA1 positively regulate Vps34 promoter activity (5 – 13-fold up-regulation; p ≤ 0.01).Lentiviral knockdown experiments were performed to elucidate the importance of Vps34 expression in ETV6-RUNX1-positive BCP-ALL cells. Knockdown of all Vps34 transcript variants, with two independent constructs, led to complete growth arrest of the ETV6-RUNX1-positive cell lines REH and AT2, while this only led to a decrease in proliferation of the ETV6-RUNX1-negative cell line NALM6. This growth arrest was caused by a significant induction of apoptosis (more than 4-fold 7 days after transduction; p ≤ 0.001) and a significantly reduced percentage of cycling cells (1.3-fold 7 days after transduction; p ≤ 0.05). Analysis of p62 protein expression by western blot and reverse phase protein arrays revealed that the levels of autophagy were significantly higher in ETV6-RUNX1-positive compared to ETV6-RUNX1-negative BCP-ALL patients (p ≤ 0.001). In addition, knockdown of ETV6-RUNX1 and Vps34 significantly reduced autophagy, quantified with confocal microscopy, in ETV6-RUNX1-positive cells with 50% and 84%, respectively (p ≤ 0.01). Furthermore, pharmacological inhibition of autophagy with hydroxychloroquine (HCQ) significantly reduced cell viability of BCP-ALL cell lines and primary patient-derived BCP-ALL cells (p ≤ 0.001). Treatment of the ETV6-RUNX1-positive BCP-ALL cell lines REH and AT2 with 20 µg/mL HCQ resulted in a 82% and 95% reduced cell viability, while the viability of ETV6-RUNX1-negative BCP-ALL cell lines and T-ALL cell lines were reduced to a lesser extent (NALM6: 43%; TOM-1: 50%; Loucy: 40%; Jurkat: 0%). Importantly, HCQ selectively sensitized ETV6-RUNX1-positive leukemic cells to L-asparaginase treatment in clinically relevant concentrations. Treatment of primary ETV6-RUNX1-positive patient cells with 10 µg/mL HCQ resulted in a 70% reduction in cell survival during L-asparaginase exposure (p ≤ 0.01). This sensitization was not observed in ETV6-RUNX1-negative BCP-ALL cells. Conclusion: The ETV6-RUNX1 fusion protein activates autophagy via Vps34, which is essential for survival and proliferation of ETV6-RUNX1-positive cells. Inhibition of autophagy in primary ETV6-RUNX1-positive leukemic cells inhibited cell survival and sensitized these cells to L-asparaginase treatment. These results indicate that autophagy inhibition may provide a novel means to sensitize L-asparaginase-resistant ETV6-RUNX1-positive BCP-ALL patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 648-652 ◽  
Author(s):  
J Ritz ◽  
LM Nadler ◽  
AK Bhan ◽  
J Notis-McConarty ◽  
JM Pesando ◽  
...  

Previous studies have demonstrated that the common acute lymphoblastic leukemia antigen (CALLA) is expressed by leukemic cells from approximately 80% of patients with non-T-cell ALL and 30%-50% of patients with chronic myelocytic leukemia in blast crisis. A small number of normal bone marrow and fetal liver cells also express CALLA, but the functional role of this molecule is unknown. In the present study, we have used a monoclonal antibody (J5) specific for CALLA to study the expression of this antigen in non-Hodgkin's lymphomas. Within the B-cell lymphomas, it was found the CALLA was expressed by almost all Burkitt's and nodular poorly differentiated lymphocytic lymphomas. Within the T-cell lymphomas, CALLA was expressed in 40% of patients with lymphoblastic lymphoma. Three of 3 Burkitt's lymphoma cell lines and three of eight T-lymphoblast cell lines were also found to express CALLA. Normal spleen, lymph node, and thymus cells were not reactive with J5 antibody. These findings indicate that expression of CALLA is not limited to relatively undifferentiated leukemic lymphoblasts but also occurs in more differentiated lymphoid malignancies. However, normal differentiated lymphoid cells in lymph node, spleen, and thymus, which have a phenotype similar to that of lymphoma cells, do not appear to express CALLA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2737-2737
Author(s):  
Mirna Golemovic ◽  
Miloslav Beran ◽  
Francis Giles ◽  
Taghi Manshouri ◽  
Deborah Thomas ◽  
...  

Abstract Imatinib mesylate is effective against Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) but, when used as a single agent, responses are transient and most patients relapse within 4–6 months. AMN107 is a novel oral aminopyrimidine ATP-competitive inhibitor of the protein tyrosine kinase activity of Bcr-Abl. Following oral administration to animals, AMN107 is well absorbed, has a good pharmacokinetic profile, and is well tolerated. The activity of AMN107, relative to imatinib, in both Ph-positive (Z-119 and Z-181) and Ph-negative (Z-138) ALL cell lines was studied. Z-119 and Z-181 cells were derived from Ph-positive ALL patients and retained typical B-cell characteristics and phenotypes of the original leukemia, including cytogenetic abnormality t(9;22) and p190 Bcr/Abl kinase. Z-138, a Ph-negative cell line, was derived from a patient with chronic lymphocytic leukemia and supervening ALL. Treatment with AMN107 or imatinib for 3 days (MTS assay) inhibited proliferation of Z-119 cells with the IC50 values of 19.3 nM and 620.0 nM, respectively, revealing AMN107 to be 32 fold more potent than imatinib. Treatment of Z-181 cell line lasted for 4 days (MTS assay) because of lower growth rate of these cells: IC50 for AMN107 and imatinib were 1.6 nM and 63.9 nM, respectively, showing AMN107 to be 40 fold more potent than imatinib. Neither drug showed activity against Ph-negative Z-138 cells. We also compared the activity of AMN107 in Ph-positive ALL cell lines expressing p190 Bcr/Abl protein to that in Ph-positive chronic myeloid leukemia cell lines KBM5 and KBM7 expressing p210 Bcr/Abl protein. The activity was similar with IC50 in KBM5 cells of 11.3 nM and in KBM7 cells of 4.3 nM. In experiments focused on cell cycle analysis we found that at equipotent doses (as determined by MTS assay) both drugs induced cell accumulation in G0/G1 phase in Z-119 but not in Z-181. We demonstrated that increasing equipotent concentrations of AMN107 and imatinib induced activation of caspase-3 that resulted in apoptosis, as assessed by propidium iodide staining, in Z-119 cells, while Z-181 cells showed lack of apoptotic response. Following treatment with a broad range of AMN107 and imatinib doses for 3 hrs, Bcr/Abl expression and phosphorylation were determined in Z-119 cells by immunoprecipitation and Western blotting: Bcr/Abl phosphorylation was inhibited completely with AMN107 at 125.0 nM, and with imatinib at 2500 nM, confirming again the higher potency of AMN107. Finally, similar differential effect of AMN107 and imatinib on Bcr/Abl protein expression and phosphorylation was observed in leukemic cells obtained from blood of Ph-positive ALL patients. We conclude that AMN107 has significant activity against Ph-positive ALL cells and warrants investigation in patients with Ph-positive ALL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4552-4552
Author(s):  
Chiara Gregorj ◽  
Fabiana De Cave ◽  
Maria R. Ricciardi ◽  
Maria C. Scerpa ◽  
Cristina M. Precupanu ◽  
...  

Abstract Methylation of CpG islands in the 5′ gene region is associated with transcriptional silencing of gene expression. The hypermethylation of tumor suppressor genes has been described in various tumor tissues, as in gastric and pancreatic cancer, as well as in acute myeloid leukemia, suggesting its potential role in tumorigenesis. Among the three members of the Kip/Cip family of cyclin dependent kinase inhibitors (CKI) p21, p27 and p57, little is known of their methylation status in hematological malignancies and contrasting studies have been reported on the role of p21 hypermethylation in the pathogenesis of acute lymphoblastic leukemia (ALL). The aim of our study was to analyze in primary blasts from adult ALL enrolled in the GIMEMA protocols 0496 and LAL2000 the methylation status of p21, defining in addition its protein expression by Western blot using the monoclonal antibody p21-WAF1 (Santa Cruz, CA). Primary samples from 81 untreated ALL patients were processed using a widely accepted method based on bisulfite modification of DNA, followed by the use of methylation-specific PCR assay (MSP). The human lymphoblastic cell lines (Jurkat, RPMI8866 and CEM), the myeloid cell line OCI-AML3 and normal peripheral blood lymphocytes (PBL) from 10 healthy donors were characterized by a consistent p21 promoter unmethylation (negative controls). In contrast, it was weakly methylated in the Raji cell line and strongly methylated in the Rael (Burkitt’s lymphoma) cell line (positive controls). This assay was further validate in vitro by SsI methylase. In the present study we analyzed 54 B-lineage ALLs, 25 T-ALLs and 2 biphenothypic leukemias; the mean WBC value at diagnosis was 125.6x109/L and 20 samples were Philadelphia chromosome positive. 71/81 of patients studied for p21 methylation were evaluated for response: 53 (74.6%) achieved complete remission (CR) after induction therapy, 8 (11.3%) patients were resistance and 10 (14.1%) died during induction therapy. DNA methylation was not observed in any of the adult ALL patients. p21 protein expression was found in OCI-AML3, Raji and RPMI8866 cell lines, while resulted negative in the Jurkat cell line and in normal PBL. Preliminary results obtained in the ALL samples showed that this protein was expressed in 8/29 (27.6%) cases. In summary, we demonstrated in a large number of primary ALL cases studied at presentation that the p21 gene is not methylated in this population and therefore that the status of p21 methylation does not play a role in the pathogenesis of adult ALL.


Sign in / Sign up

Export Citation Format

Share Document