Genome-Wide DNA Methylation Patterns Reveal Specific Signatures for HSC, CMP and Erythroblasts.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 391-391
Author(s):  
Amber Hogart ◽  
Subramanian S. Ajay ◽  
Hatice Ozel Abaan ◽  
Stacie M. Anderson ◽  
Elliott H. Margulies ◽  
...  

Abstract Abstract 391 DNA methylation is a reversible epigenetic modification that is required for proper mammalian development and is proposed to contribute to the pathogenesis of hematologic diseases including leukemia and bone marrow failure syndromes. Elucidating the pathways and genes regulated by DNA methylation during hematopoiesis may reveal new therapeutic targets for disease. Because the phenotype and activity of hematopoietic stem cells (HSC) and hematopoietic progenitor cells of many different lineages have been defined by both in vitro and in vivo assays, hematopoiesis is an excellent model for investigating epigenomic changes during differentiation. HSCs have the ability to self-renew and to generate blood cells of all lineages, which allows them to repopulate recipients after stem cell transplantation. The common myeloid progenitor (CMP) gives rise to all myeloid cell types including neutrophils, monocytes, platelets, and red blood cells, but cannot self renew or repopulate. In contrast to the multipotent HSC and CMP, erythroblasts (ERY) are terminally committed cells that become mature enucleated red blood cells. These three cell types represent unique stages of lineage commitment with distinct transcriptional programs, and potentially unique epigenomic signatures. In contrast to human HSC, which are defined by the absence of several cell surface markers, mouse HSC have the cell surface phenotype of lineage marker negative (Lin-) c-kit+ Sca-1+ and can be positively selected. For this reason we chose the mouse model for genome-wide methylation profiling. Murine HSC and CMP (Lin- c-kit+ Sca-1-) cells were enriched from adult mouse bone marrow with flow cytometry. Erythroblasts (CD71+/Ter119+) were positively selected from E13.5 mouse fetal livers. Genomic DNA isolated from each enriched cell population was sheared to 200-300 bp fragments. MBD2, one of five endogenous mammalian methyl CpG binding domain proteins, binds methylated DNA sequences with broad affinity. Methylated DNA fragments were enriched from the genomic DNA using a tagged, recombinant MBD2 pulldown kit (Active Motif). After pulldown, enrichment of known methylated sequences regulating the imprints of Snrpn and Rasgrf was validated by qPCR. Two biological replicates of HSC, CMP, and ERY methylated sequences and negative control supernatant fractions were submitted for high-throughput sequencing with the Illumina Genome Analyzer platform. Raw sequence data containing 32-46 × 106 reads of 36-50 base pairs were obtained for each sample. The Eland program was used to map 41-59% of reads to unique sequences in the mouse genome. Model-based Analysis of ChIP-Seq (MACS) was used to estimate the mean and variance of the sequence tag distribution across the genome and define peaks below the significance threshold of p<10-5. The number of methylation peaks decreased as cells differentiated, with 64,000 peaks identified in HSC (24,000 unique), 41,000 peaks in CMP (2000 unique), and 23,000 peaks in ERY (1000 unique). Approximately 20,000 peaks were common between all cell types with 57% of these peaks residing in RefSeq genes, 8% in regions adjacent to RefSeq genes (<10 kb), and 35% of methylation peaks in intergenic regions. Comparison of HSC expression data from Akashi et al (Blood 101: 383, 2003) to our HSC genic methylation peaks revealed that 2/3 of HSC genic peaks are within transcriptionally silent genes while 1/3 of HSC genic peaks are within expressed genes. Although DNA methylation is often associated with gene silencing, the important developmental gene Gata2 contains methylation peaks in HSC and CMP, cells that express Gata2, that are absent in ERY, where Gata2 is repressed. A Gata1-Fog1-Mbd2 complex has been described by Rodriguez et al (EMBO 24: 2354, 2005), therefore providing a link between DNA methylation and proteins known to bind at the Gata2 locus. Grass et al (Mol. Cell. Biol. 26:7056, 2006) determined that Gata2 is regulated by long-range interactions of GATA protein complexes, and consistent with this observation, distinct methylation patterns are observed up to 100 kb upstream of the Gata2 gene. Our genome-wide analysis supports an association of methylation with gene silencing but also suggests that DNA methylation is a dynamic epigenetic mark that influences hematopoietic differentiation. The changes in DNA methylation we observe around Gata2 may also contribute to long-range chromatin organization. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3622-3622
Author(s):  
Yang Liu ◽  
Shenghua Duan ◽  
Xavier Leleu ◽  
Yong Zhang ◽  
Abdel Kareem A. Azab ◽  
...  

Abstract Abstract 3622 Introduction: Epigenetic factors such as DNA methylation have been shown to play a crucial role in the pathogenesis and progression of multiple myeloma (MM), yet studies of DNA methylation in MM are still limited. Therefore, in order to better understand the role of DNA methylation and identify specific genes that may be affected by differential methylation in MM patients, we conducted genome-wide DNA methylation profiling in cd138+ plasma cells purified from bone marrow of the patients with MM and normal donors. Methods: Genomic DNA of CD138+ Plasma cell selected from both MM patients and normal primary bone marrow was extracted using QIAGEN genome isolation kit. Following extraction, methylated DNA was isolated by Chip and hybridized to Affymetrix Human 2.0 tiling arrays. Chip assay and array hybridization was performed by Genepathway Inc. CEL files were processed and normalized using the MAT program, and methylation peaks were called from the resulting MAT scores using a custom segmentation method. Peak annotation and characterization of different genomic regions was done with custom tools and using genome annotation files from the UCSC genome database. All peaks were visualized by IGB online software. Medip-PCR was done in human MM cell lines to validate the methylation status. Methylated gene expression was determined by both Semi-quantitative PCR and real-time PCR. 5′aza was used for demethylation in human MM cell lines. Methylated gene expression with or without 5′aza treatment was determined by both Semi-quantitative PCR and real-time PCR. Results: Genomic DNA from CD138+ plasma cells from bone marrow of MM patients showed a significant increase in methylation levels compared to normal controls. We demonstrated that the hypermethylated sites were distributed across the genome in the following proportions: 3.2% in the promoter region; 45.6% in the intragenic region; 5.4 % in the 3′ end region; and 46.8 % in the intergenic region. Furthermore, around 9 % promoter CpG islands (CGIs); 11% intragenic CGIs; 15 % CGIs in 3′end region; and 14.3 % intergenic CGIs of patients genomic DNA were methylated. Moreover 2.1% promoter CGIs; 2.3 % intragenic CGIs; 2.5% CGIs in 3′end region; and 4.7% intergenic CGIs were methylated for the normal control. Medip-PCR showed that the identified methylation pattern in MM patients showed similar results in MM cell lines. Expectedly, we also observed that suppressor of cytokine signaling 1 (SOCS1) was hypermethylated at the promoter region (MAT score=19.986) as has been reported in human cell lines. Importantly, another member of SOCS family SOCS3 showed much stronger signal in the promoter region with CpG island (MAT score=31.707) in MM patients compared to normal control. Notably, the expression of two members of TNFR superfamily TNFRSF18 and TNFRSF4 which play an important role in development and programmed cell death of lymphocyte significantly have increased 283 and 141-fold after treatment with 5′aza in MM cell lines. Conclusion: These findings enhance our understanding of the role of DNA methylation in MM, as one of the epigenetic changes that may contribute to the pathogenesis of this disease. The identification and functional characterization of novel key molecules affected by DNA methylation will provide deeper insight into the molecular basis of MM disease. Disclosures: Leleu: Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Genome ◽  
2007 ◽  
Vol 50 (8) ◽  
pp. 778-785 ◽  
Author(s):  
Amy B. MacKay ◽  
Aizeddin A. Mhanni ◽  
Ross A. McGowan ◽  
Patrick H. Krone

DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial. Here we have addressed this issue by applying the techniques of Southwestern immunoblotting and immunohistochemistry with an anti–5-methylcytosine antibody to the examination of DNA methylation in early zebrafish embryos. These techniques have recently been utilized to demonstrate that development-specific changes in genomic DNA methylation also occur in Drosophila melanogaster and Dictyostelium discoideum , both organisms for which DNA methylation was previously not thought to occur. Our data demonstrate that genome-wide changes in DNA methylation occur during early zebrafish development. Although zebrafish sperm DNA is strongly methylated, the zebrafish genome is not detectably methylated through cleavage and early blastula stages but is heavily remethylated in blastula and early gastrula stages.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 591-591 ◽  
Author(s):  
Fabienne Brenet ◽  
Michelle Moh ◽  
Patricia Funk ◽  
Daoqui You ◽  
Agnes J. Viale ◽  
...  

Abstract Abstract 591 The human genome is adorned with methylated cytosine residues that function in the epigenetic guidance of cellular differentiation and development. Cellular interpretation of this epigenetic mark is incompletely understood and tissue specific patterns of DNA methylation vary with age, can be altered by environmental factors, and are often abnormal in human disease. Aberrant DNA methylation is a common means by which tumor suppressor genes (TSGs) are inactivated during carcinogenesis (Baylin, Herman, Graff, Vertino and Issa 1998; Laird and Jaenisch 1996; Singal and Ginder 1999). Unlike genetic mechanisms of gene inactivation, such as gene deletion and mutation, the epigenetic silencing of TSGs by promoter hypermethylation is potentially reversible. This has led to the broad interest of cancer biologists in the study of DNA methylation. Method: We developed a method for genome-wide analysis of DNA methylation by using a recombinant protein containing a methyl-CpG binding domain (MBD) to enrich methylated DNA fragments that are then identified by massively parallel sequencing using the SOLiD sequencer (ABI). We generated ∼15-million sequence tags per specimen and wrote custom R-language algorithms to develop an analytical platform with which to study DNA methylation. We used this technology to study the pharmacodynamics of DNA methylation in acute myelogenous leukemia (AML) cells following exposure to the hypomethylating agent, 5-aza-2'-deoxycytidine (decitabine). We compared DNA methylation patterns before and after decitabine treatment with transcriptional activity revealed by microarrays (Illumina) and quantitative PCR. We found that Sequence Tag Analysis of Methylation Profiles (STAMP) permits highly reproducible, genome-wide identification of DNA methylation density at near base-pair resolution. This method is cost effective and can be extended, without modification, to any mapped genome. Results: STAMP analysis revealed patterned DNA methylation at all scales across the genome: from whole chromosomes to individual genes. We found that densely methylated elements (DMEs) of the human genome are often highly conserved or closely associated with gene coding regions and promoters. We identified distinct patterns of DNA methylation surrounding the transcription start and termination sites of all genes. These methylation patterns are associated with transcriptional activity of neighboring genes. Interestingly, genes with a densely methylated transcription start site (TSS) have little methylation in the surrounding regions whereas genes with little or no methylation at the TSS have disproportionately higher methylation within their gene bodies. In untreated cells, we detected ∼75,000 DMEs (false discovery rate <0.01) with a median length ∼600 bp and with 75% being less than 960bp. The longest DMEs extend up to ∼24000 bp and are composed of microsatellite clusters. The majority of the DMEs are not classic CpG islands (CGI) but are GC-rich regions (median 57% GC) with a greater than expected incidence of CpG dinucleotides (median CpG observed/expected 0.49): results that suggest the definition of a CGI excludes the majority of the methylated human genome. Although the pattern of DNA methylation was qualitatively similar in cells treated with decitabine, we found that the density of methylation was generally lower and fewer DMEs (∼50,000) were identified. Decitabine treatment led to increased expression of ∼800 genes involved in cell cycle control, apoptosis and cellular differentiation whereas the ∼50 genes with downregulated expression were most commonly involved in RNA metabolism. Distinct pre-treatment DNA methylation patterns were associated with, and tended to predict, the transcriptional activity following treatment with decitabine. Summary: We developed and utilized a powerful new technology to uncover the genome-wide effects of decitabine on DNA methylation patterns in AML. We found that although decitabine induces genome-wide DNA hypomethylation, its effect on transcription depends upon the pattern of DNA methylation prior to treatment. The STAMP methodology leverages the power and flexibility of massively parallel sequencing with the high selectivity of the MBD for its natural ligand, methyl-CpG. This assay permits robust, unbiased and highly sensitive whole-genome identification of methylated DNA segments. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Lauren J. Mills ◽  
Milcah C. Scott ◽  
Pankti Shah ◽  
Anne R. Cunanan ◽  
Archana Deshpande ◽  
...  

AbstractOsteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor suppressor p53 TP53 is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples.SignificanceThis is the first large scale study of DNA methylation in osteosarcoma and lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of different genomic landscapes.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1115
Author(s):  
Oxana Yu. Naumova ◽  
Rebecca Lipschutz ◽  
Sergey Yu. Rychkov ◽  
Olga V. Zhukova ◽  
Elena L. Grigorenko

Recent research has provided evidence on genome-wide alterations in DNA methylation patterns due to trisomy 21, which have been detected in various tissues of individuals with Down syndrome (DS) across different developmental stages. Here, we report new data on the systematic genome-wide DNA methylation perturbations in blood cells of individuals with DS from a previously understudied age group—young children. We show that the study findings are highly consistent with those from the prior literature. In addition, utilizing relevant published data from two other developmental stages, neonatal and adult, we track a quasi-longitudinal trend in the DS-associated DNA methylation patterns as a systematic epigenomic destabilization with age.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Brian A. Walker ◽  
Christopher P. Wardell ◽  
Laura Chiecchio ◽  
Emma M. Smith ◽  
Kevin D. Boyd ◽  
...  

Abstract We used genome-wide methylation microarrays to analyze differences in CpG methylation patterns in cells relevant to the pathogenesis of myeloma plasma cells (B cells, normal plasma cells, monoclonal gammopathy of undetermined significance [MGUS], presentation myeloma, and plasma cell leukemia). We show that methylation patterns in these cell types are capable of distinguishing nonmalignant from malignant cells and the main reason for this difference is hypomethylation of the genome at the transition from MGUS to presentation myeloma. In addition, gene-specific hypermethylation was evident at the myeloma stage. Differential methylation was also evident at the transition from myeloma to plasma cell leukemia with remethylation of the genome, particularly of genes involved in cell–cell signaling and cell adhesion, which may contribute to independence from the bone marrow microenvironment. There was a high degree of methylation variability within presentation myeloma samples, which was associated with cytogenetic differences between samples. More specifically, we found methylation subgroups were defined by translocations and hyperdiploidy, with t(4;14) myeloma having the greatest impact on DNA methylation. Two groups of hyperdiploid samples were identified, on the basis of unsupervised clustering, which had an impact on overall survival. Overall, DNA methylation changes significantly during disease progression and between cytogenetic subgroups.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 600-600
Author(s):  
Hyang-Min Byun ◽  
Timothy Triche ◽  
Hyeoung-Joon Kim ◽  
Hee Nam Kim ◽  
Yeo-Kyeoung Kim ◽  
...  

Abstract Abstract 600 Background: Azacitidine is hypothesized to exert its therapeutic effect in patients with myelodysplastic syndrome (MDS) through inhibition of DNA methylation. However to date no genomic DNA methylation pattern has been shown to predict response to azacitidine in patients with MDS, and no aberrantly silenced gene or group of genes has been shown to be reactivated by azacitidine that can be clearly linked to the beneficial clinical effect. We sought to identify the gene or group of aberrantly hypermethylated genes that are responsible for the therapeutic effect of azacitidine by retrospectively analyzing genome-wide DNA methylation profiles from bone marrow samples of a cohort of 113 patients with MDS treated with the DNA methylation inhibitor, azacitidine. Methods: Bone marrow aspirates were collected at time of diagnosis prior to treatment, after 4 cycles of azacitidine therapy and 8 cycles of therapy. DNA was isolated and bisulfite treated with the EZ-96 DNA Methylation-Gold Kit. DNA methylation analysis was performed on 27,578 CpG sites representing 14,475 genes (almost ¾ of known genes) using the Infinium Bead Array system for samples at the time of diagnosis, 4 and 8 cycles of therapy. Only 19,662 CpG sites were used for further analysis due to exclusion of CpG sites that were on the × chromosome, sites suspected of containing single nucleotide polymorphisms (SNP), and sites within DNA repeats. In total 91 samples were analyzed from 43 patients with MDS, which were selected to represent different disease classifications and responses to therapy, and bone marrow aspirates from 10 healthy control subjects without MDS. Results: Two-way hierarchical cluster analysis showed clear clustering of bone marrow samples taken from subjects without MDS. DNA methylation patterns from healthy controls clustered together, and pre and post azacitidine treatment samples from the same subject clustered together as well. Samples did not cluster by DNA methylation patterns for WHO classification, International Prognostic Scoring System (IPSS), cytogenetic abnormalities, or response to azacitidine. Supervised cluster analysis is ongoing. Global decreases in DNA methylation as measured by the average methylation for all 19,662 loci assayed did decrease with treatment and there was a trend for a larger decrease in DNA methylation in those patients who responded to azacitidine. Conclusion: In this pilot study of genome-wide DNA methylation analysis of MDS patients treated with azacitidine we find global decreases of DNA methylation. We were unable to identify a DNA methylation pattern or group of hypermethylated genes that would predict response to azacitidine. MDS samples did not cluster by WHO classification, IPSS or response to azacitidine. Larger translational studies are needed, but the possibility that DNA methylation decreases in patients treated with azacitidine serve as a pharmacological marker rather than a therapeutic target should also be considered Disclosures: Laird: Celgene: Consultancy. Yang:Celgene: Honoraria, Research Funding, Speakers Bureau.


2020 ◽  
Author(s):  
Izaskun Mallona ◽  
Ioana Mariuca Ilie ◽  
Massimiliano Manzo ◽  
Amedeo Caflisch ◽  
Tuncay Baubec

AbstractMammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences are not mediated by the differential recruitment of the two de novo DNMTs to the genome but are resulting from structural differences in their catalytic domains. Molecular dynamics simulations suggest that, in case of DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. This context-dependent de novo DNA methylation provides additional insights into the complex regulation of methylation patterns in different cell types.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wardah Mahmood ◽  
Lars Erichsen ◽  
Pauline Ott ◽  
Wolfgang A. Schulz ◽  
Johannes C. Fischer ◽  
...  

AbstractLINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


Sign in / Sign up

Export Citation Format

Share Document