Calpain Regulation of Megakaryopoiesis through a Positive Regulatory Loop Involving P-TEFb, GATA-1, and RUNX1.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 566-566
Author(s):  
Kamaleldin E Elagib ◽  
Lorrie L Delehanty ◽  
Ivailo Mihaylov ◽  
Adam Goldfarb

Abstract Abstract 566 GATA-1 and RUNX1 cooperate in programming megakaryocytic development through the critical intermediation of the active P-TEFb kinase complex (Cdk9/cyclin T1). RUNX1 on its own traps P-TEFb in inactive chromatin loops and causes RNA pol II (RNAP II) stalling. GATA-1 by contrast remodels chromatin loops and promotes RNAP II elongation. Thus, P-TEFb most likely integrates and resolves conflicting signals from RUNX1 and GATA-1 to coordinate orderly activation of megakaryocytic target genes during development. P-TEFb activity is tightly regulated by a large network of interacting factors including Cdk9, cyclin T1, HEXIM1 and 7SK snRNA, RNA processing factors, and transcriptional regulators. During megakaryocytic differentiation, global activation of P-TEFb involves dissociation of HEXIM1 and recruitment of GATA-1, in a manner dependent on Cdk9 activity. The current studies address factors that regulate this dramatic reconfiguration of the P-TEFb complex during initiation of megakaryocytic differentiation. Candidate factors were identified based on two criteria: participation in the P-TEFb complex and specific upregulation in megakaryocytic differentiation. Notably, analysis of a P-TEFb interactome database identified the protease calpain 2 and its cofactor calpain S1 as participants in this complex (Jeronimo CD. Et. al. Mol Cell 2007). We confirmed a physical interaction by coimmunoprecipitation of endogenous calpain 2 and cyclin T1. Analysis of gene expression databases revealed three striking features of calpain 2: 1) strong upregulation early in megakaryocytic differentiation, 2) defective upregulation in GATA-1-deficient megakaryocytes, and 3) defective upregulation in megakaryocytes expressing GATA-1s, a mutant form associated with Down syndrome-associated megakaryocytic disorders (DS-TMD and DS-AMKL). The role of calpain in megakaryocytic differentiation of primary human CD34+ progenitors was assessed by shRNA knockdown (kd) of calpain S1, a required cofactor for calpains 1 and 2, as well as by treatment of cells with the calpain inhibitors calpeptin and Calpain Inhibitor III. All three approaches blocked cellular enlargement, CD41 upregulation, and polyploidization, indicating a critical role for calpain activity in early steps of megakaryocytic differentiation. We next addressed the hypothesis that calpain contributed to megakaryocytic differentiation through positive regulation of P-TEFb activity. In support of this hypothesis, calpain inhibition prevented the P-TEFb-driven processes of RNAP II hyperphosphorylation and HEXIM1 upregulation, both normally seen in megakaryocytic differentiation. In addition, calpain inhibition blocked the transcriptional cooperation of RUNX1 and GATA-1, which we have previously shown to be dependent on P-TEFb activity. How calpain activity regulates P-TEFb remains unclear, but in vitro and in vivo assays identified cyclin T1 and RNAP II as highly sensitive targets of calpain 2/S1 protease activity. Because P-TEFb remodeling in megakaryopoiesis requires Cdk9 kinase activity, we examined the possibility that calpain itself might be regulated by Cdk9, a notion supported by multiple experiments. In particular, Cdk9 inhibition by shRNA kd or flavopiridol treatment prevented the calpain-dependent cleavage of cyclin T1 and RNAP II normally seen in megakaryocytic differentiation. Furthermore, using purified, recombinant factors, in vitro calpain 2 cleavage of the RNAP II carboxy terminal domain (CTD) showed an absolute requirement for active P-TEFb complex. We thus postulate the existence of a novel regulatory circuit in which P-TEFb and calpain control the activity of one another during megakaryocytic differentiation. The participation of RUNX1 and GATA-1 in this circuit is suggested by the requirements for P-TEFb and calpain activity for their transcriptional cooperation. In addition, a murine strain with megakaryocytic GATA-1 deficiency, the GATA-1Lo strain, showed drops in platelet counts when treated with the calpain inhibitor E64, in contrast to to wild type counterparts, which responded with increased platelet counts. This novel regulatory circuit most likely has clinical relevance for at least two reasons: 1) P-TEFb inhibition in GATA-1Lo mice has been shown to elicit a disorder resembling the DS-TMD, and 2) megakaryocytes expressing GATA-1s display defective upregulation of calpains 2 and S1. Disclosures: No relevant conflicts of interest to declare.

Author(s):  
Yuanping Cao ◽  
Qun Wang ◽  
Caiyun Liu ◽  
Wenjun Wang ◽  
Songqing Lai ◽  
...  

Abstract Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice, and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signaling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun, and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signaling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.


1998 ◽  
Vol 141 (3) ◽  
pp. 647-662 ◽  
Author(s):  
David A. Potter ◽  
Jennifer S. Tirnauer ◽  
Richard Janssen ◽  
Dorothy E. Croall ◽  
Christina N. Hughes ◽  
...  

Previous studies suggest that the Ca2+-dependent proteases, calpains, participate in remodeling of the actin cytoskeleton during wound healing and are active during cell migration. To directly test the role that calpains play in cell spreading, several NIH-3T3– derived clonal cell lines were isolated that overexpress the biological inhibitor of calpains, calpastatin. These cells stably overexpress calpastatin two- to eightfold relative to controls and differ from both parental and control cell lines in morphology, spreading, cytoskeletal structure, and biochemical characteristics. Morphologic characteristics of the mutant cells include failure to extend lamellipodia, as well as abnormal filopodia, extensions, and retractions. Whereas wild-type cells extend lamellae within 30 min after plating, all of the calpastatin-overexpressing cell lines fail to spread and assemble actin-rich processes. The cells genetically altered to overexpress calpastatin display decreased calpain activity as measured in situ or in vitro. The ERM protein ezrin, but not radixin or moesin, is markedly increased due to calpain inhibition. To confirm that inhibition of calpain activity is related to the defect in spreading, pharmacological inhibitors of calpain were also analyzed. The cell permeant inhibitors calpeptin and MDL 28, 170 cause immediate inhibition of spreading. Failure of the intimately related processes of filopodia formation and lamellar extension indicate that calpain is intimately involved in actin remodeling and cell spreading.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1106 ◽  
Author(s):  
Mira Laajala ◽  
Minna M. Hankaniemi ◽  
Juha A. E. Määttä ◽  
Vesa P. Hytönen ◽  
Olli H. Laitinen ◽  
...  

Enteroviruses are small RNA viruses that cause diseases with various symptoms ranging from mild to severe. Enterovirus proteins are translated as a single polyprotein, which is cleaved by viral proteases to release capsid and nonstructural proteins. Here, we show that also cellular calpains have a potential role in the processing of the enteroviral polyprotein. Using purified calpains 1 and 2 in an in vitro assay, we show that addition of calpains leads to an increase in the release of VP1 and VP3 capsid proteins from P1 of enterovirus B species, detected by western blotting. This was prevented with a calpain inhibitor and was dependent on optimal calcium concentration, especially for calpain 2. In addition, calpain cleavage at the VP3-VP1 interface was supported by a competition assay using a peptide containing the VP3-VP1 cleavage site. Moreover, a mass spectrometry analysis showed that calpains can cleave this same peptide at the VP3-VP1 interface, the cutting site being two amino acids aside from 3C’s cutting site. Furthermore, we show that calpains cannot cleave between P1 and 2A. In conclusion, we show that cellular proteases, calpains, can cleave structural proteins from enterovirus polyprotein in vitro. Whether they assist polyprotein processing in infected cells remains to be shown.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 552-552
Author(s):  
Kamaleldin Elagib ◽  
Jeremy D. Rubinstein ◽  
Lorrie L. Delehanty ◽  
Peter A. Greer ◽  
Shuran Li ◽  
...  

Abstract Abstract 552 Megakaryocytic differentiation uniquely relies on a hypertrophic program involving massive cellular enlargement and nuclear polyploidization. A critical mechanism driving this program consists of global P-TEFb activation, a process involving the release of an active Cdk9-cyclin T kinase module from a larger, inactive 7SK snRNP complex. We previously implicated the protease complex calpain 2/S1 in P-TEFb activation during megakaryopoiesis and demonstrated a direct contribution of calpain activity to megakaryocytic differentiation (Elagib et al., ASH 2009). The clinical relevance of this pathway was suggested by findings in patient samples and knockin mice of defective calpain 2 upregulation in megakaryocytes bearing the leukemogenic GATA-1s mutant. Current studies address: 1) the mechanism by which calpain 2/S1 activates P-TEFb during normal megakaryopoiesis, 2) the genetic program controlled by P-TEFb during megakaryopoiesis, and 3) the relevance of calpain 2 deficiency to abnormal megakaryopoiesis associated with GATA-1s. Regarding the mechanism of P-TEFb activation by calpain, analysis of a P-TEFb interactome database identified an interaction of calpain S1 with the protein BCDIN3 (Jeronimo CD. et. al. Mol Cell 2007). BCDIN3 stabilizes the 7SK snRNA through capping activity, but also exerts enzyme-independent stabilization by forming a core complex with 7SK snRNA and the protein LARP7. This core complex provides the foundation for assembly of the 7SK snRNP involved in restraining P-TEFb activity. Using adult human CD34+ cells cultured in unilineage megakaryocytic medium, both BCDIN3 and LARP7 proteins were found to undergo dramatic downregulation during differentiation, leading to global destabilization of 7SK snRNA. By contrast, neither BCDIN3, LARP7, nor 7SK snRNA underwent downregulation during erythroid differentiation. Megakaryocytic downregulation of BCDIN3, but not LARP7, required calpain activity. Calpain inhibitors as well as shRNA knockdown of calpain 2 prevented BCDIN3 downregulation during megakaryocytic cultures. In vitro reactions with recombinant purified factors confirmed direct cleavage of BCDIN3 by calpain 2/S1. The role of BCDIN3 downregulation in megakaryopoiesis was assessed by shRNA knockdown experiments. Notably, enforcing downregulation of BCDIN3 in CD34+ cells in erythroid medium reprogrammed differentiation away from the erythroid lineage and toward the megakaryocytic lineage. Thus BCDIN3 is a critical target of calpain 2/S1 during megakaryocytic activation of P-TEFb. To identify P-TEFb target genes, a bioinformatic approach was used to screen megakaryocytic expression databases for genes coregulated with known P-TEFb targets, e.g. HEXIM1. This approach yielded a cohort of coregulated genes encoding actin associated factors: ACTN1, FLNA, TGFB1I1, and MKL1. Immunoblot analsysis validated that all four factors underwent concomitant upregulation during megakaryocytic but not erythroid differentiation. shRNA knockdowns of calpain 2 and Cdk9 confirmed that upregulation of these factors depended on calpain and P-TEFb activation. Previous studies have indicated a requirement for ACTN1 downregulation in cytokinesis. Thus, shRNA knockdowns determined whether ACTN1 upregulation contributed to megakaryocytic polyploidization. Strikingly, ACTN1 knockdown blocked the polyploidization of human CD34+ cells but allowed other features of megakaryocytic differentiation, e.g. CD41 upregulation. Thus, a key aspect of the genetic program controlled by P-TEFb in megakaryopoiesis consists of the upregulation of a cohort of actin-associated factors which contribute to a hypertrophic program of cellular enlargement and polyploidization. To address the role of calpain in the aberrant megakaryopoiesis associated with mutant GATA-1s, fetal liver (fl) cells from GATA-1s knockin (G1s ki) mice were studied. Previous studies have shown a hyperproliferative phenotype in G1s ki fl but not adult megakaryocytes. In the current study, enforced calpain 2 expression by lentiviral transduction reversed this phenotype and enhanced terminal differentiation, reflected by polyploidization and CD42 expression. Thus, the defective upregulation of calpain 2 in megakaryocytes with GATA-1s most likely plays a critical role in the abnormal megakaryopoiesis seen in Down syndrome-associated megakaryoctyic proliferative disorders. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 95 (2) ◽  
pp. 233-239 ◽  
Author(s):  
Zhi-Hua Wan ◽  
Guo-Hao Li ◽  
Yong-Lian Guo ◽  
Wen-Zhou Li ◽  
Lin Chen

Introduction: Erectile dysfunction (ED) after cavernous nerve (CN) injury remains difficult to treat. Calpain plays a critical role in causing neurodegenerative diseases. This study aimed to evaluate whether calpain inhibition preserves erectile function in a rat model of CN injury. Materials and Methods: Rats underwent sham surgery or CN crush injury. The CN-crushed rats were treated with vehicle or MDL-28170, a specific calpain inhibitor. At 1, 2, 3, and 7 days post-surgery, major pelvic ganglia (MPG) were harvested, followed by the measurement of erectile function, respectively. At 28 days, penile tissue and distal CN were harvested, followed by the measurement of erectile function in rats. Calpain activity in MPG and corpus cavernosum, as well as TGF-β1/Smad2 and collagen content in corpus cavernosum, were measured by western blot. Neuronal nitric oxide synthase (nNOS) was observed by immunohistochemistry. Results: Increased calpain activity was observed in MPG and corpus cavernosum. CN crush markedly attenuated the erectile responses and nNOS expression in CN, and these were improved by MDL-28170 treatment. Furthermore, treatment prevented increased TGF-β1/Smad2 and collagen expression in corpus cavernosum. Conclusions: Our results suggested that calpain activation plays a role in pathogenesis of CN injury-associated ED. Calpain inhibition could be a novel approach for preventing the development of ED following CN injury.


1999 ◽  
Vol 73 (1) ◽  
pp. 695-701 ◽  
Author(s):  
Roberta L. Debiasi ◽  
Margaret K. T. Squier ◽  
Bobbi Pike ◽  
Murry Wynes ◽  
Terence S. Dermody ◽  
...  

ABSTRACT The cellular pathways of apoptosis have not been fully characterized; however, calpain, a cytosolic calcium-activated cysteine protease, has been implicated in several forms of programmed cell death. Reoviruses induce apoptosis both in vitro and in vivo and serve as a model for studying virus-induced cell death. We investigated the potential role of calpain in reovirus-induced apoptosis in vitro by measuring calpain activity as well as evaluating the effects of calpain inhibitors. L929 cells were infected with reovirus type 3 Abney (T3A), and calpain activity, measured as cleavage of the fluorogenic calpain substrate Suc-Leu-Leu-Val-Tyr-AMC, was monitored. There was a 1.6-fold increase in calpain activity in T3A-infected cells compared to mock-infected cells; this increase was completely inhibited by preincubation with calpain inhibitor I (N-acetyl-leucyl-leucyl-norleucinal [aLLN]), an active-site inhibitor. Both aLLN and PD150606, a specific calpain inhibitor that interacts with the calcium-binding site, inhibited reovirus-induced apoptosis in L929 cells by 54 to 93%. Apoptosis induced by UV-inactivated reovirus was also reduced 65 to 69% by aLLN, indicating that inhibition of apoptosis by calpain inhibitors is independent of effects on viral replication. We conclude that calpain activation is a component of the regulatory cascade in reovirus-induced apoptosis.


2007 ◽  
Vol 82 (3) ◽  
pp. 1581-1590 ◽  
Author(s):  
Paula Upla ◽  
Varpu Marjomäki ◽  
Liisa Nissinen ◽  
Camilla Nylund ◽  
Matti Waris ◽  
...  

ABSTRACT Calpains are calcium-dependent cysteine proteases that degrade cytoskeletal and cytoplasmic proteins. We have studied the role of calpains in the life cycle of human echovirus 1 (EV1). The calpain inhibitors, including calpeptin, calpain inhibitor 1, and calpain inhibitor 2 as well as calpain 1 and calpain 2 short interfering RNAs, completely blocked EV1 infection in the host cells. The effect of the inhibitors was not specific for EV1, because they also inhibited infection by other picornaviruses, namely, human parechovirus 1 and coxsackievirus B3. The importance of the calpains in EV1 infection also was supported by the fact that EV1 increased calpain activity 3 h postinfection. Confocal microscopy and immunoelectron microscopy showed that the EV1/caveolin-1-positive vesicles also contain calpain 1 and 2. Our results indicate that calpains are not required for virus entry but that they are important at a later stage of infection. Calpain inhibitors blocked the production of EV1 particles after microinjection of EV1 RNA into the cells, and they effectively inhibited the synthesis of viral RNA in the host cells. Thus, both calpain 1 and calpain 2 are essential for the replication of EV1 RNA.


2006 ◽  
Vol 290 (6) ◽  
pp. R1589-R1597 ◽  
Author(s):  
Moin U. Fareed ◽  
Amy R. Evenson ◽  
Wei Wei ◽  
Michael Menconi ◽  
Vitaliy Poylin ◽  
...  

Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that sepsis-induced muscle proteolysis may be initiated by calpain-dependent release of myofilaments from the sarcomere, followed by ubiquitination and degradation of the myofilaments by the 26S proteasome. In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture. The inhibition of protein breakdown was not accompanied by reduced expression of the ubiquitin ligases atrogin-1/MAFbx and MuRF1, suggesting that the ubiquitin-proteasome system is regulated independent of the calpain system in septic muscle. When incubated muscles were treated in vitro with calpain inhibitor, protein breakdown rates and calpain activity were reduced, consistent with a direct effect in skeletal muscle. Additional experiments suggested that the effects of BN82270 on muscle protein breakdown may, in part, reflect inhibited cathepsin L activity, in addition to inhibited calpain activity. When cultured myoblasts were transfected with a plasmid expressing the endogenous calpain inhibitor calpastatin, the increased protein breakdown rates in dexamethasone-treated myoblasts were reduced, supporting a role of calpain activity in atrophying muscle. The present results suggest that treatment with calpain inhibitors may prevent sepsis-induced muscle wasting.


2019 ◽  
Vol 19 (1S) ◽  
pp. 221-222
Author(s):  
N S Pestereva ◽  
A Z Marshak ◽  
M N Karpenko

The aim of our study was to identify the activity of calpains under conditions of an experimental increase in the level of dopamine. The work was performed at three levels: in vivo, in situ, in vitro. An in situ study was carried on a model of isolated nerve endings - synaptosomes. Using casein zymography in solution with FITC-casein, it was shown that incubation of synaptosomes dopamine leads to calpains secretion into the synaptosomal medium. The dopamine ability to directly activate calpain was demonstrated by casein zymography in a gel. Incubation in an activation buffer containing dopamine instead of the classical activator, calcium chloride, led to the activation of calpain-2. An in vivo experiment was performed on Wistar rats. The experimental group was orally administered the drug L-dopa (100 mg/kg), the control group - saline was injected in the same way.


2009 ◽  
Author(s):  
Yuan Kim ◽  
Edward M. Steadham ◽  
Steven M. Lonergan ◽  
Elisabeth J. Huff-Lonergan

Sign in / Sign up

Export Citation Format

Share Document