Genome-Wide Profiling of Epigenetic and Transcription Factor Regulation In Human Macrophage Differentiation

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3875-3875
Author(s):  
Thu-Hang Pham ◽  
Monika Lichtinger ◽  
Chris Benner ◽  
Sabine Pape ◽  
Lucia Schwarzfischer ◽  
...  

Abstract Abstract 3875 The differentiation of human macrophages is accompanied by distinctive phenotypical changes and generally proceeds in the absence of proliferation. The molecular events governing this process are still poorly understood. Using ChIP-Seq technology we studied epigenetic changes as well as alterations in transcription factor occupancy during human monocyte differentiation and correlated these events with gene expression levels in hematopoietic cell types. We show that putative enhancer regions marked by histone H3 lysine4 monomethylation (H3K4me1) at different developmental stages (human progenitor cells, peripheral blood monocytes and in vitro differentiated macrophages) are enriched in distinct sets of transcription factor motifs corresponding to lineage-determining factors. Cell stage-specific histone methylation at promoter-distal sites corresponds with increased mRNA expression levels of neighboring genes. We generated global DNA-binding maps in monocytes and macrophages for two transcription factors (PU.1 and C/EBPβ) with a well established role in monocyte/macrophage differentiation. Comparison of human binding sites with corresponding mouse data revealed a surprisingly low level of conservation (∼10-15%) of PU.1-or C/EBPβ -bound sites between man and mouse, despite a highly conserved binding preference for both transcription factors. During monocytic differentiation, human macrophages primarily gained additional binding sites for both transcription factors (as well as promoter-distal H3K4me1). Interestingly, only neighboring genes with multiple binding events showed significantly increased, macrophage-specific mRNA expression as compared to monocytic as well as lymphocytic cell types. Human macrophage-specific H3K4me1-marked regions as well as macrophage-specific PU.1- and C/EBP-bound sites were characterized by overlapping sets of novel sequence motifs, suggesting that the combinatorial interaction of corresponding DNA-binding factors with PU.1 and C/EBPβ may be required for the establishment of human macrophage-specific enhancers. These data provide novel insights into PU.1 and C/EBPβ mediated gene regulation during human macrophage differentiation. Disclosures: No relevant conflicts of interest to declare.

2017 ◽  
Author(s):  
Katarzyna Wreczycka ◽  
Vedran Franke ◽  
Bora Uyar ◽  
Ricardo Wurmus ◽  
Altuna Akalin

AbstractHigh-occupancy target (HOT) regions are the segments of the genome with unusually high number of transcription factor binding sites. These regions are observed in multiple species and thought to have biological importance due to high transcription factor occupancy. Furthermore, they coincide with house-keeping gene promoters and the associated genes are stably expressed across multiple cell types. Despite these features, HOT regions are solemnly defined using ChIP-seq experiments and shown to lack canonical motifs for transcription factors that are thought to be bound there. Although, ChIP-seq experiments are the golden standard for finding genome-wide binding sites of a protein, they are not noise free. Here, we show that HOT regions are likely to be ChIP-seq artifacts and they are similar to previously proposed “hyper-ChIPable” regions. Using ChIP-seq data sets for knocked-out transcription factors, we demonstrate presence of false positive signals on HOT regions. We observe sequence characteristics and genomic features that are discriminatory of HOT regions, such as GC/CpG-rich k-mers and enrichment of RNA-DNA hybrids (R-loops) and DNA tertiary structures (G-quadruplex DNA). The artificial ChIP-seq enrichment on HOT regions could be associated to these discriminatory features. Furthermore, we propose strategies to deal with such artifacts for the future ChIP-seq studies.


2018 ◽  
Author(s):  
Mehran Karimzadeh ◽  
Michael M. Hoffman

AbstractMotivationIdentifying transcription factor binding sites is the first step in pinpointing non-coding mutations that disrupt the regulatory function of transcription factors and promote disease. ChIP-seq is the most common method for identifying binding sites, but performing it on patient samples is hampered by the amount of available biological material and the cost of the experiment. Existing methods for computational prediction of regulatory elements primarily predict binding in genomic regions with sequence similarity to known transcription factor sequence preferences. This has limited efficacy since most binding sites do not resemble known transcription factor sequence motifs, and many transcription factors are not even sequence-specific.ResultsWe developed Virtual ChIP-seq, which predicts binding of individual transcription factors in new cell types using an artificial neural network that integrates ChIP-seq results from other cell types and chromatin accessibility data in the new cell type. Virtual ChIP-seq also uses learned associations between gene expression and transcription factor binding at specific genomic regions. This approach outperforms methods that predict TF binding solely based on sequence preference, pre-dicting binding for 36 transcription factors (Matthews correlation coefficient > 0.3).AvailabilityThe datasets we used for training and validation are available at https://virchip.hoffmanlab.org. We have deposited in Zenodo the current version of our software (http://doi.org/10.5281/zenodo.1066928), datasets (http://doi.org/10.5281/zenodo.823297), predictions for 36 transcription factors on Roadmap Epigenomics cell types (http://doi.org/10.5281/zenodo.1455759), and predictions in Cistrome as well as ENCODE-DREAM in vivo TF Binding Site Prediction Challenge (http://doi.org/10.5281/zenodo.1209308).


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Suming Xu ◽  
Yaoqin Wang ◽  
Yanhong Li ◽  
Lei Zhang ◽  
Chunfang Wang ◽  
...  

Abstract The inhibitor of differentiation/DNA-binding (ID) is a member of the helix–loop–helix (HLH) transcription factor family, and plays a role in tumorigenesis, invasiveness and angiogenesis. The aims were to investigate the expression patterns and prognostic values of individual ID family members in lung cancer, and the potential functional roles. The expression levels of ID family were assessed using the Oncomine online database and GEPIA database. Furthermore, the prognostic value of ID family members was evaluated using the Kaplan–Meier plotter database. The genetic mutations of ID family members were investigated using the cBioPortal database. Moreover, enrichment analysis was performed using STRING database and Funrich software. It was found that all the ID family members were significantly down-regulated in lung cancer. Prognostic results indicated that low mRNA expression levels of ID1 or increased mRNA expression levels of ID2/3/4 were associated with improved overall survival, first progression and post progression survival. Additionally, genetic mutations of ID family members were identified in lung cancer, and it was suggested that amplification and deep deletion were the main mutation types. Furthermore, functional enrichment analysis results suggested that ID1/2/4 were significantly enriched in ‘regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism’ for biological process, ‘transcription factor activity’ for molecular function and ‘HLH domain’ for protein domain. However, it was found that ID3 was not enriched in the above functions. The aberrant expression of ID family members may affect the occurrence and prognosis of lung cancer, and may be related to cell metabolism and transcriptional regulation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 56-56
Author(s):  
Irene Riz ◽  
Kristin K. Baxter ◽  
Hyo Jung Lee ◽  
Reza Behnam ◽  
Teresa S. Hawley ◽  
...  

Abstract Homeodomain proteins (homeoproteins) have long been recognized as powerful transcriptional regulators. Inappropriate expression of these transcription factors often leads to major developmental malformations or malignant transformation. The in vitro DNA binding sites of homeoproteins are short sequences that are widely distributed throughout the genome and some canonical binding sites have been shown to be functionally important at distances >20 kb away from the nearest transcription start site. In addition to DNA-binding activity, several homeoproteins have been demonstrated to interact with chromatin-modifying enzymes. For example, we and others have reported that the TLX1 homeoprotein of T-cell acute lymphoblastic leukemia (T-ALL) inhibits the PP1/PP2A serine/threonine phosphatases (I. Riz and R.G. Hawley, Oncogene 24: 5561–5575, 2005) and more recently have found that TLX1 modulates histone/transcription factor acetyltransferase CBP activity (I. Riz et al., Oncogene 26: 4115–4123, 2007). PP1/PP2A and CBP are complex molecular machines integrating diverse regulatory pathways that impact on cell survival, proliferation and differentiation outcomes. Organogenesis and malignant transformation - despite obvious differences - share a common requirement for high-order cooperativity of transcription factors and transcriptional cofactors in regulating the expression of multiple sets of genes executing cell fate shifts. Targeting key regulatory nodes in order to coordinately regulate multiple genes is a common strategy of virus induced cell-transformation: accordingly, PP1/PP2A and CBP are targeted by transforming viral proteins. The Groucho/TLE (transducin-like Enhancer-of-split) family of corepressors are another example of master regulators of cell fate; for instance, it was reported that triggering the MAPK signaling cascade inactivates TLE corepressors leading to coordinated derepression of a large number of genes involved in cell proliferation. We now demonstrate that TLX1 interferes with TLE1 repressive function. By streptavidin affinity-based precipitation of biotinylated recombinant TLX1 protein (TLX1 fused to a biotinylation peptide) we show in vivo interaction of TLX1 and TLE1 in several different cell types, including human T-ALL and neuroblastoma cells. Interaction of TLX1 with TLE1 occurs via an Engrailed homology 1 (Eh1)-like domain as documented by GST pull-down assays and laser scanning confocal microscopy. Transient transfection experiments indicate that TLX1 prevents TLE1-mediated repression of reporter genes. Furthermore, in the context of endogenous chromatin structure, TLX1 derepresses the bHLH transcription factor gene, ACSL1(HASH1), a well characterized target of the HES1/TLE1 repressor complex. The process requires direct interaction of TLX1 with TLE1 and binding of TLX1 to DNA, since a point mutation in the Eh1-like motif or deletion of the third helix of the TLX1 homeodomain abrogated the effect. Additional data to be presented suggest a long-range mechanism of transcriptional regulation by TLX1: we propose that “transcriptional activation” by TLX1 (and, by analogy, other homeoproteins that interact with TLE corepressors) results in part from the chaperoned redistribution of TLE corepressors from proximal promoter regions of target genes to distal chromatin regulatory sites.


2018 ◽  
Vol 115 (30) ◽  
pp. E7222-E7230 ◽  
Author(s):  
Sharon R. Grossman ◽  
Jesse Engreitz ◽  
John P. Ray ◽  
Tung H. Nguyen ◽  
Nir Hacohen ◽  
...  

Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.


2004 ◽  
Vol 128 (12) ◽  
pp. 1364-1371
Author(s):  
Ximbo Zhang ◽  
Frederick L. Kiechle

Abstract Context.—The pyrimidine nucleoside analog, cytosine arabinoside (Ara-C), is an effective therapeutic agent for acute leukemia. The phosphorylated triphosphate, cytosine arabinoside triphosphate, competes with deoxycytosine triphosphate as a substrate for incorporation into DNA. Once incorporated into DNA, it inhibits DNA polymerase and topoisomerase I and modifies the tertiary structure of DNA. Objective.—To determine if the substitution of Ara-C for cytosine in double-stranded oligonucleotides that contain 4 specific transcription factor binding sites (TATA, GATA, C/EBP, and AP-2α) alters transcription factor binding to their respective DNA binding elements. Design.—Transcription factors were obtained from nuclear extracts from human promyelocytic leukemia HL-60 cells. [32P]-end-labeled double-stranded oligonucleotides that contained 1 or 2 specific transcription factor binding sites with or without Ara-C substitution for cytosine were used to assess transcription factor binding by electrophoretic mobility shift assay. Results.—The substitution of Ara-C for cytosine within and outside the transcription factor binding element (AP-2α, C/EBP), outside the binding element only (GATA, TATA), or within the binding element only (AP-2α) all result in a reduction in transcription factor binding to their respective DNA binding element. Conclusion.—The reduction of the binding capacity of transcription factors with their respective DNA binding elements may depend on structural changes within oligonucleotides induced by Ara-C incorporation. This altered binding capacity of transcription factors to their DNA binding elements may represent one mechanism for Ara-C cytotoxicity secondary to inhibition of transcription of new messenger RNAs and, subsequently, translation of new proteins.


2019 ◽  
Author(s):  
Suzanne Randle ◽  
Heike Laman

AbstractFbxo7 is a key player in the differentiation and function of numerous blood cell types, and in neurons, oligodendrocytes and spermatocytes. In an effort to gain insight into the physiological and pathological settings where Fbxo7 is likely to play a key role, we sought to define the transcription factors which direct FBXO7 expression. Using sequence alignments across 28 species, we defined the human FBXO7 promoter and found that it contains two conserved regions enriched for multiple transcription factor binding sites. Many of these have roles in either neuronal or haematopoietic development. Using various FBXO7 promoter reporters, we found ELF4, Pax5 and c-Myb have functional binding sites that activate transcription. Overlap of Pax5 and c-Myb binding sites suggest that these factors bind cooperatively to transactivate the FBXO7 promoter. Although endogenous Pax5 is bound to the FBXO7 promoter in B cells, c-Myb is also required for FBXO7 expression. Our data suggest the interplay of multiple transcription factors regulate the FBXO7 promoter.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


1998 ◽  
Vol 18 (11) ◽  
pp. 6293-6304 ◽  
Author(s):  
Vesco Mutskov ◽  
Delphine Gerber ◽  
Dimitri Angelov ◽  
Juan Ausio ◽  
Jerry Workman ◽  
...  

ABSTRACT In this study, we examined the effect of acetylation of the NH2 tails of core histones on their binding to nucleosomal DNA in the absence or presence of bound transcription factors. To do this, we used a novel UV laser-induced protein-DNA cross-linking technique, combined with immunochemical and molecular biology approaches. Nucleosomes containing one or five GAL4 binding sites were reconstituted with hypoacetylated or hyperacetylated core histones. Within these reconstituted particles, UV laser-induced histone-DNA cross-linking was found to occur only via the nonstructured histone tails and thus presented a unique tool for studying histone tail interactions with nucleosomal DNA. Importantly, these studies demonstrated that the NH2 tails were not released from nucleosomal DNA upon histone acetylation, although some weakening of their interactions was observed at elevated ionic strengths. Moreover, the binding of up to five GAL4-AH dimers to nucleosomes occupying the central 90 bp occurred without displacement of the histone NH2 tails from DNA. GAL4-AH binding perturbed the interaction of each histone tail with nucleosomal DNA to different degrees. However, in all cases, greater than 50% of the interactions between the histone tails and DNA was retained upon GAL4-AH binding, even if the tails were highly acetylated. These data illustrate an interaction of acetylated or nonacetylated histone tails with DNA that persists in the presence of simultaneously bound transcription factors.


Sign in / Sign up

Export Citation Format

Share Document