Thymic Stromal Lymphopoietin Stimulation of Pediatric Acute Lymphoblastic Leukemias with CRLF2 Alterations Induces JAK/STAT and PI3K Phosphosignaling

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 410-410 ◽  
Author(s):  
Sarah K Tasian ◽  
Michelle Y Doral ◽  
Brent L Wood ◽  
Michael J Borowitz ◽  
J. Racquel Collins-Underwood ◽  
...  

Abstract Abstract 410 Collaborative genomic profiling efforts though the National Cancer Institute's TARGET Initiative and the Children's Oncology Group have identified CRLF2 and JAK mutations in a subset of children with high-risk acute lymphoblastic leukemia (ALL), but few biochemical studies have assessed the functional sequelae of these genetic alterations. CRLF2 encodes the thymic stromal lymphopoietin (TSLP) receptor chain, which heterodimerizes with the IL-7 receptor alpha chain (IL-7Rα). Children with high CRLF2-expressing ALL detected by gene expression profiling have high rates of minimal residual disease at end-induction (Day 29), and approximately 70% of these patients ultimately relapse (Harvey et al., Blood 2010). We hypothesize that characterization of aberrant signaling networks in these leukemias will facilitate identification of potential targets for small molecule inhibitor therapies. Using phosphoflow cytometry, we analyzed the phosphorylation status of key signaling molecules after stimulation with TSLP, IL-7, or pervanadate (an irreversible proximal membrane phosphatase inhibitor used as a positive control) in 2 human ALL cell lines with CRLF2 and JAK2 mutations and in 43 fresh or cryopreserved diagnostic primary patient samples, 27 of which overexpressed CRLF2 through P2RY8-CRLF2 fusion or CRLF2-IgH translocation and 16 of which did not have CRLF2 or JAK mutations (controls). Cells were rested in serum-free media for 60 minutes at 37°C, then stimulated with TSLP, IL-7, or pervanadate for 30 minutes to induce signaling. Cells were also exposed to the JAK inhibitor XL019 (Exelixis) for 60 minutes and/or subsequently stimulated with the aforementioned cytokines or pervanadate to determine the effects of JAK inhibition on signaling. Cells were then processed for phosphoflow cytometry according to our previously published methodologies (Kotecha et al., Cancer Cell 2008). High CRLF2-expressing leukemias (n = 27) with or without concomitant JAK mutations demonstrated strong surface staining of the TSLP receptor, as well as CD10, CD19, and CD127 (IL-7Rα). In vitro stimulation of leukemic blasts with TSLP elicited phosphorylation of STAT5 and S6, but not ERK 1/2, in leukemias with JAK and/or CRLF2 alterations. Control leukemias without CRLF2 and JAK mutations (n=16) did not stain for the TSLP receptor, and TSLP stimulation did not elicit phosphosignaling through the JAK/STAT, PI3K, or MAPK pathways. STAT5 and S6 phosphorylation in the high CRLF2-expressing leukemias was further abrogated by in vitro JAK inhibition with XL019. Surprisingly, despite flow cytometric staining for CD127, stimulation with IL-7 did not elicit phosphosignaling through these epitopes in high CRLF2-expressing or control leukemic blasts, although it did predictably phosphorylate STAT5 in control T and non-blast B cells contained within the primary patient leukemia samples. These results suggest that the JAK/STAT and PI3K pathways, but not the MAPK pathway, are involved in TSLP receptor signaling in high CRLF2-expressing ALL +/− JAK mutations and may represent druggable targets. Phosphoflow cytometry is an efficient method of interrogating intracellular signaling at a single-cell level in primary human samples and, furthermore, can be used for rapid identification of patients at time of leukemia diagnosis with high CRLF2-expressing ALL who exhibit the TSLP phosphosignature. Therapy for this subset of high-risk patients might be modified to include a targeted therapeutic (such as a JAK inhibitor) to improve initial treatment responses and, ultimately, to enhance long-term survival. To this end, we have developed a Children's Oncology Group Phase I clinical trial of JAK inhibition for patients with relapsed or refractory leukemias (including those with CRLF2 and JAK mutations) and will validate the use of phosphoflow cytometry and other biologic assays to assess in vivo target inhibition during therapy. We ultimately envision incorporation of JAK inhibitor therapy into a systemic chemotherapy backbone for patients with high CRLF2-expressing ALL. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 232-232 ◽  
Author(s):  
Kathryn G. Roberts ◽  
Yongjin Li ◽  
Debbie Payne-Turner ◽  
Richard C. Harvey ◽  
Jinjun Cheng ◽  
...  

Abstract BCR-ABL1-like B-progenitor acute lymphoblastic leukemia (B-ALL) accounts for 10-15% of childhood B-ALL and is characterized by alteration of IKZFI, a gene expression profile similar to BCR-ABL1 ALL and poor outcome. Using next-generation sequencing, we have shown that BCR-ABL1-like ALL patients harbor genetic alterations activating kinase pathways that are sensitive to tyrosine kinase inhibitors (TKIs), and have shown that refractory BCR-ABL1-like ALL is responsive to TKIs in vivo (Weston et al., J. Clin. Oncol 2013). Furthermore, the outcome of ALL in adolescent and young adult (AYA) patients is inferior to children, yet the genetic basis underlying treatment failure is poorly understood. To define the frequency and genomic landscape of BCR-ABL1-like ALL in children, adolescents, and young adults we have extended our studies to include 665 high-risk childhood (<16 years, 14% BCR-ABL1-like), 370 adolescent (16-21 years, 21% BCR-ABL1-like) and 161 young adult (21-39 years; 26% BCR-ABL1-like) B-ALL cases from the Children's Oncology Group, St Jude Children's Research Hospital, Eastern Cooperative Oncology Group, MD Anderson Cancer Center and the Alliance - CALGB trials. Event-free survival (EFS) for BCR-ABL1-like cases was inferior to non BCR-ABL1-like cases with 5-year EFS rates of 40.0±7.1 vs 85.0±3.3 (p<0.0001) for adolescent cases and 16.1±8.5 vs 57.9±8.0 (p=0.006) for young adult cases. In each age group, 50-60% of BCR-ABL1-like cases harbored rearrangements of CRLF2 (IGH@-CRLF2 or P2RY8-CRLF2) (Fig. 1). To characterize the full spectrum of kinase lesions in the remaining BCR-ABL1-like ALL cases we performed mRNA-seq on pediatric (n=39), adolescent (n=21) and young adult (n=22) cases, and whole genome (WGS; n=18) or exome sequencing (n=10) on cases with matched tumor and normal material. Fusion transcripts were identified using deFuse and CICERO, a novel assembly-based structural variation detection method specifically designed for mRNA-seq analysis. We identified 23 different kinase rearrangements involving 7 tyrosine kinase or cytokine receptor genes. These consist of 5 ABL1, 2 PDGFRB, 8 JAK2 fusions and 2 EPOR translocations to IGH@ and IGK@ loci, along with new fusions involving the tyrosine kinases ABL2 (n=3), CSF1R (n=1), AKT2 (n=1) and STAT5B (n=1). We performed frequency testing for 15 of these fusions on 555 cases from the COG AALL0232 trial of high-risk B-ALL. Several alterations were recurrent in BCR-ABL1-like ALL, including NUP214-ABL1, RCSD1-ABL2, SSBP2-CSF1R, PAX5-JAK2 and EPOR translocations. Notably, we did not identify any of these fusions in non BCR-ABL1-like cases. The frequency of ABL1/ABL2 and EPOR translocations was consistent across all age groups (∼16% and 7% of BCR-ABL1-like cases, respectively), while JAK2 rearrangements were more common in young adult than in pediatric and adolescent ALL (12%). Importantly, ∼10% of BCR-ABL1-like ALL cases lacked a kinase-activating alteration on analysis of mRNA-seq data. Notably, we identified two additional cases with IL7R or SH2B3 sequence mutations, indicating the requirement for complementary approaches such as WGS to fully define the genomic landscape of BCR-ABL1-like ALL. Current functional studies include the development of experimental models using the Ba/F3 hematopoietic progenitor cell line, primary mouse pre-B cultures and the generation of xenografts to determine the role of these alterations in leukemogenesis, and to enable testing of targeted therapies. For example, we show that RCSD1-ABL1 and SSBP2-CSF1R confer factor-independent growth and constitutive activation of JAK/STAT pathways in Ba/F3 cells. Furthermore, RCSD1-ABL1 and SSBP2-CSF1R are both sensitive to the TKIs, imatinib (IC50 378nM and 327nM, respectively) and dasatinib (IC50 2.1nM and 2.5nM, respectively). Together, these complementary approaches will further define the genetic landscape of both pediatric and AYA ALL, and facilitate the development of diagnostic and therapeutic strategies to improve the treatment outcome for high-risk BCR-ABL1-like ALL patients. Disclosures: Hunger: Bristol Myers Squibb: Consultancy.


2021 ◽  
Vol 22 (13) ◽  
pp. 6653
Author(s):  
Axel Karow ◽  
Monika Haubitz ◽  
Elisabeth Oppliger Leibundgut ◽  
Ingrid Helsen ◽  
Nicole Preising ◽  
...  

Increased cell proliferation is a hallmark of acute lymphoblastic leukemia (ALL), and genetic alterations driving clonal proliferation have been identified as prognostic factors. To evaluate replicative history and its potential prognostic value, we determined telomere length (TL) in lymphoblasts, B-, and T-lymphocytes, and measured telomerase activity (TA) in leukocytes of patients with ALL. In addition, we evaluated the potential to suppress the in vitro growth of B-ALL cells by the telomerase inhibitor imetelstat. We found a significantly lower TL in lymphoblasts (4.3 kb in pediatric and 2.3 kb in adult patients with ALL) compared to B- and T-lymphocytes (8.0 kb and 8.2 kb in pediatric, and 6.4 kb and 5.5 kb in adult patients with ALL). TA in leukocytes was 3.2 TA/C for pediatric and 0.7 TA/C for adult patients. Notably, patients with high-risk pediatric ALL had a significantly higher TA of 6.6 TA/C compared to non-high-risk patients with 2.2 TA/C. The inhibition of telomerase with imetelstat ex vivo led to significant dose-dependent apoptosis of B-ALL cells. These results suggest that TL reflects clonal expansion and indicate that elevated TA correlates with high-risk pediatric ALL. In addition, telomerase inhibition induces apoptosis of B-ALL cells cultured in vitro. TL and TA might complement established markers for the identification of patients with high-risk ALL. Moreover, TA seems to be an effective therapeutic target; hence, telomerase inhibitors, such as imetelstat, may augment standard ALL treatment.


Cancer Cell ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Kathryn G. Roberts ◽  
Ryan D. Morin ◽  
Jinghui Zhang ◽  
Martin Hirst ◽  
Yongjun Zhao ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Anna Płotka ◽  
Krzysztof Lewandowski

<b><i>Background:</i></b> <i>BCR/ABL1</i>-like acute lymphoblastic leukemia is a newly recognized high-risk subtype of ALL, characterized by the presence of genetic alterations activating kinase and cytokine receptor signaling. This subtype is associated with inferior outcomes, compared to other B-cell precursor ALL. <b><i>Summary:</i></b> The recognition of <i>BCR/ABL1</i>-like ALL is challenging due to the complexity of underlying genetic alterations. Rearrangements of <i>CRLF2</i> are the most frequent alteration in <i>BCR/ABL1</i>-like ALL and can be identified by flow cytometry. The identification of <i>BCR/ABL1</i>-like ALL can be achieved with stepwise algorithms or broad-based testing. The main goal of the diagnostic analysis is to detect the underlying genetic alterations, which are critical for the diagnosis and targeted therapy. <b><i>Key Messages:</i></b> The aim of the manuscript is to review the available data on <i>BCR/ABL1</i>-like ALL characteristics, diagnostic algorithms, and novel, molecularly targeted therapeutic options.


Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
FW Preijers ◽  
T De Witte ◽  
JM Wessels ◽  
GC De Gast ◽  
E Van Leeuwen ◽  
...  

Abstract Seven patients with high-risk acute T-cell lymphoblastic leukemia (T- ALL) and six with T cell lymphoma (T-LL) were treated with autologous bone marrow transplantation (ABMT) after in vitro purging of their bone marrow with WT1 (CD7)-ricin A-chain immunotoxin. CD7 expression on the tumor cells showed large variations between the individual patients and was highly related to the specific cytotoxicity of WT1-ricin A. Incubation of bone marrow with up to 10(-8)mol/L WT1-ricin A in the presence of 6 mmol/L NH4Cl did not compromise the growth potential of the hematopoietic progenitors CFU-GM, CFU-GEMM, and BFU-E. Hematologic engraftment (greater than 10(9) leukocytes/L) occurred within a normal time period (median, 17 days). Seven patients are alive and in complete remission (CR) at 48+, 44+, 40+, 26+, 11+, 7+, and 6+ months after ABMT. Four patients relapsed within 6 months after ABMT. Two of them had the lowest CD7 expression on their tumor cells, the other two were transplanted in CR2 and CR3. Two patients died from transplantation related infections. The immunologic reconstitution was delayed, although the numbers of T cells reached normal levels within 1 month. The number of CD7+ cells remained low up to 1 year after transplantation. The T4/T8-ratio was decreased for at least 6 months. The T-cell response to mitogens recovered to normal levels after 1 year. This study shows that ABMT with WT1-ricin A purged bone marrow in high-risk T-cell malignancies results in a complete hematopoietic and a delayed immunologic reconstitution. The actuarial relapse free survival is 61% at 3 years.


Blood ◽  
2017 ◽  
Vol 129 (25) ◽  
pp. 3352-3361 ◽  
Author(s):  
Shalini C. Reshmi ◽  
Richard C. Harvey ◽  
Kathryn G. Roberts ◽  
Eileen Stonerock ◽  
Amy Smith ◽  
...  

Key Points Ph-like ALL is characterized by a diverse array of genetic alterations activating cytokine receptor and tyrosine kinase signaling. Pediatric patients with Ph-like ALL can be identified in real time for effective treatment stratification.


2020 ◽  
Vol 4 (12) ◽  
pp. 2762-2767
Author(s):  
Donia M. Moujalled ◽  
Diane T. Hanna ◽  
Soroor Hediyeh-zadeh ◽  
Giovanna Pomilio ◽  
Lauren Brown ◽  
...  

Abstract Improving survival outcomes in adult B-cell acute lymphoblastic leukemia (B-ALL) remains a clinical challenge. Relapsed disease has a poor prognosis despite the use of tyrosine kinase inhibitors (TKIs) for Philadelphia chromosome positive (Ph+ ALL) cases and immunotherapeutic approaches, including blinatumomab and chimeric antigen receptor T cells. Targeting aberrant cell survival pathways with selective small molecule BH3-mimetic inhibitors of BCL-2 (venetoclax, S55746), BCL-XL (A1331852), or MCL1 (S63845) is an emerging therapeutic option. We report that combined targeting of BCL-2 and MCL1 is synergistic in B-ALL in vitro. The combination demonstrated greater efficacy than standard chemotherapeutics and TKIs in primary samples from adult B-ALL with Ph+ ALL, Ph-like ALL, and other B-ALL. Moreover, combined BCL-2 or MCL1 inhibition with dasatinib showed potent killing in primary Ph+ B-ALL cases, but the BH3-mimetic combination appeared superior in vitro in a variety of Ph-like ALL samples. In PDX models, combined BCL-2 and MCL1 targeting eradicated ALL from Ph− and Ph+ B-ALL cases, although fatal tumor lysis was observed in some instances of high tumor burden. We conclude that a dual BH3-mimetic approach is highly effective in diverse models of high-risk human B-ALL and warrants assessment in clinical trials that incorporate tumor lysis precautions.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 182-182
Author(s):  
Charles G. Mullighan ◽  
J. Racquel Collins-Underwood ◽  
Letha A Phillips ◽  
Michael G. Loudin ◽  
Wei Liu ◽  
...  

Abstract Abstract 182 Chromosomal alterations are a hallmark of acute lymphoblastic leukemia (ALL), but many cases lack a recurring cytogenetic abnormality. To identify novel alterations contributing to leukemogenesis, we previously performed genome-wide profiling of genetic alterations in pediatric ALL using single nucleotide polymorphism (SNP) microarrays. This identified a novel focal deletion involving the pseudoautosomal region (PAR1) of Xp/Yp in 15 B-progenitor ALL cases lacking sentinel chromosomal abnormalities, including six of eight cases of ALL associated with Down syndrome (DS-ALL). The deletion involved hematopoietic cytokine receptor genes, including IL3RA and CSF2RA, but due to poor array coverage, it was not possible to define the limits of deletion using SNP array data alone. To characterize this abnormality, we examined an expanded cohort of 329 B-ALL cases, including 22 B-progenitor DS-ALL cases. Strikingly, 12 (55%) DS-ALL cases harbored the PAR1 deletion. Mapping using high density CGH arrays showed the deletion to be identical in each case, and involved a 320kb region extending from intron 1 of the purinergic receptor gene P2RY8 to the promoter of CRLF2 (encoding cytokine receptor like factor 2, or thymic stromal lymphopoietin receptor). The deletion resulted in a novel fusion of the first, non-coding exon of P2RY8 to the entire coding region of CRLF2 in each case. The P2RY8-CRLF2 fusion resulted in elevated expression of CRLF2 detectable by quantitative RT-PCR, and flow cytometric analysis of leukemic cells. One DS-ALL case with elevated CRLF2 expression lacked the PAR1 deletion, but had an IGH@-CRLF2 translocation detected by fluorescence in situ hybridization (FISH). CRLF2 alteration was associated with gain of chromosome X (which was shown by FISH to result in duplication of the PAR1 deletion), deletion of 9p, and the presence of Janus kinase (JAK1 and JAK2) mutations. Ten (53%) of patients with CRLF2 alteration had JAK mutations, compared with two patients lacking CRLF2 abnormalities (P<0.0001). To validate these findings, we examined an additional 53 B-progenitor DS-ALL cases, and identified PAR1 deletion and P2RY8-CRLF2 fusion in 28 (52%) of cases. The deletion was also associated with elevated CRLF2 expression and JAK mutation in this cohort. CRLF2 forms a heterodimeric receptor with interleukin 7 receptor alpha, and binds thymic stromal lymphopoietin. CRLF2 signaling is important for T and dendritic cell development, but is not required for normal B cell development. The association of CRLF2 dysregulation and JAK mutations suggests a cooperative role in leukemogenesis, and to test this hypothesis, we examined the transforming effects of P2RY8-CRLF2 and JAK mutations in cytokine dependent murine Ba/F3 pro-B cells engineered to express IL-7 receptor alpha (Ba/F3-IL7R cells). Co-expression of both P2RY8-CRLF2 and JAK mutations (either the pseudokinase mutation R683G or the kinase domain mutation P933R) resulted in cytokine independent growth and constitutive Jak-Stat activation, but not expression of either P2RY8-CRLF2 or these JAK mutations alone. This transformation was attenuated by pharmacologic JAK inhibitors and shRNA mediated knockdown of CRLF2. Furthermore, co-immunoprecipitation demonstrated direct interaction of CRLF2 and phoshorylated JAK2. These findings identify CRLF2 alteration as a novel submicroscopic abnormality in B-progenitor ALL that is especially frequent in DS-ALL, and suggest that abnormal CRLF2 signaling, mediated by elevated CRLF2 expression and JAK mutation, is an important event in leukemogenesis. Furthermore, the association between CRLF2 alteration and JAK mutation may in part explain the lineage specificity of different JAK mutations in hematologic malignancies. Finally, these findings suggest that therapeutic inhibition of JAK-STAT signaling will be an important therapeutic approach in B-progenitor ALL with CRLF2 and JAK alterations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 67-67
Author(s):  
Kathryn G. Roberts ◽  
Ryan D Morin ◽  
Jinghui Zhang ◽  
Martin Hirst ◽  
Richard C. Harvey ◽  
...  

Abstract Abstract 67 Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, and relapsed B-lineage ALL remains a leading cause of cancer death in young people. Recent genomic analyses by our group and others identified a unique subtype of BCR-ABL-negative, high-risk B-ALL, with deletion or mutation of IKZF1 and a gene expression profile similar to BCR-ABL1-positive ALL (Ph-like ALL). Up to 50% of Ph-like patients harbor rearrangements of the cytokine receptor gene, CRLF2, with concomitant JAK mutations detected in ∼30%. However, the nature of genetic alterations activating kinase signaling in the remaining cases is unknown. To identify novel genetic alterations in Ph-like ALL, we performed transcriptome sequencing (RNA-seq) on 11 cases of Ph-like B-ALL (10 from the P9906 Children's Oncology Group trial and 1 from the St Jude Total XV study), and whole genome sequencing (WGS) on two of these. Using multiple complementary analysis pipelines including deFuse, Mosaik, CREST and CONSERTING, we identified novel rearrangements, structural variations and sequence mutations dysregulating cytokine receptor and kinase signaling in 10 cases. Putative rearrangements and sequence mutations were validated using RT-PCR, genomic PCR and Sanger sequencing. The spectrum of alterations included 3 cases with known IGH@CRLF2 rearrangement, 2 cases with the NUP214-ABL1 rearrangement, 1 case each with the in-frame fusions EBF1-PDGFRB, BCR-JAK2 or STRN3-JAK2, and 1 case with a cryptic IGH@-EPOR rearrangement. Detailed analysis of RNA-seq data revealed a 7.5 kb insertion of EPOR downstream of the enhancer domain in the IGH@ locus, which was not detected by fluorescence in situ hybridization. WGS identified an in-frame activating insertion in the transmembrane domain of IL7R (L242>FPGVC) in 1 index case, and recurrence screening identified similar IL7R sequence mutations in 8 cases from the P9906 cohort (N=188). This patient also harbored a focal homozygous deletion removing the first two exons of SH2B3 that was not evident by SNP array analysis. SH2B3 encodes LNK, a negative regulator of JAK2 signaling. Notably, all patients harbor genetic lesions affecting B-lymphoid development (e.g IKZF1), suggesting these events cooperate to drive B-lineage ALL. To determine the frequency of each fusion, candidate RT-PCR was performed on 231 cases from the COG AALL0232 trial of high-risk B-ALL, 40 (17%) of which were identified as Ph-like using Predictor Analysis of Microarrays (PAM). The EBF1-PDGFRB fusion was detected in 3 additional patients, each containing an intact PDGFRB kinase domain. No additional cases of NUP214-ABL1, BCR-JAK2, or STRN3-JAK2 were identified. Phosphoflow analysis on 3 primary ALL samples demonstrated increased CKRL phosphorylation in the NUP214-ABL1 case and tyrosine phosphorylation in the cases with BCR-JAK2 and STRN3-JAK2 fusions. Importantly, this activation was reduced with the tyrosine kinase inhibitors (TKI) imatinib, dasatinib and the T315I inhibitor XL228 in cells harboring the ABL1 fusion, and the JAK2 inhibitor, XL019, in the JAK2-rearranged samples. Furthermore, the novel EBF1-PDGFRB fusion transformed Ba/F3 cells to growth factor independence, induced constitutive activation of pSTAT5, pAkt, pERK1/2, and responded with low IC50 values to imatinib, dasatinib and the specific PDGFRB/FGFR inhibitor, dovitinib. Using complementary genomic approaches we show that rearrangements, sequence mutations and DNA copy number alterations dysregulating cytokine receptor and kinase signaling are a hallmark of Ph-like ALL. These data support the screening of patients at diagnosis to identify those with Ph-like ALL, characterize the genomic lesions driving this phenotype, and to determine those that may benefit from TKI treatment. Disclosures: Hunger: Bristol-Myers Squibb: Author's children own stock in BMS, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document