MicroRNA-130a Targets ATG2B, AGO4 and DICER1, Inhibits Autophagy and Induces Cell Death in Chronic Lymphocytic Leukemia

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1768-1768 ◽  
Author(s):  
Valentina Kovaleva ◽  
Rodrigo Mora ◽  
Stephan Stilgenbauer ◽  
Peter Lichter ◽  
Martina Seiffert

Abstract Abstract 1768 B-cell chronic lymphocytic leukemia (CLL) is characterized by deregulated expression of microRNAs (miRNAs). These post-transcriptional regulators of gene expression play a crucial role in controlling multiple cellular processes. By microarray analysis and quantitative RT-PCR we observed significantly lower levels of miR-126, miR-130a, miR-143, miR-181a and miR-326 in primary CLL cells compared to normal B cells. Transfection of synthetic miR-130a or miR-143 induced a significant reduction in cell viability of both primary CLL cells and the CLL cell line MEC-1. As autophagy is connected to cancer cell survival and resistance to apoptosis, we investigated the effect of these two miRNAs on autophagy by following the specific autophagosome marker LC3 (microtubule-associated protein 1 light chain 3). Therefore, we generated MEC-1 cells stably expressing GFP-tagged LC3 and analyzed autophagosome formation by using an imaging flow cytometer quantifying GFP-positive dots. These experiments revealed that autophagy is induced in these cells upon starvation, and that introduction of miR-130a, but not miR-143, resulted in a reduction of autophagosome formation (see Figure). These findings were verified by LC3 Western blot analysis, and extended to primary CLL cells, showing for the first time that autophagy is an active process in these cells and that miR-130a inhibits autophagy in primary CLL cells as well. To further elucidate the molecular mechanism of miR-130a-mediated CLL cell survival and autophagy, we aimed at identifying putative target genes of this miRNA and identified ATG2B, an autophagy-related gene, as well as DICER1 and AGO4, two components of the miRNA processing machinery, as direct target genes of miR-130a in CLL cells. The relevance and role of these three novel target genes in miR-130a-regulated cell death/cell survival programs is under current investigation. Figure: Analysis of autophagy using MEC-1 cell line stably expressing GFP-tagged LC3 protein. Green dots representing autophagosomes were quantified in MEC-1/GFP-LC3 cells under starvation by imaging flow cytometry (Image Stream, Amnis). Transfection with synthetic miR-130a reduced the autophagic flux in these cells compared to scrambled negative control miRNA (NC). Figure:. Analysis of autophagy using MEC-1 cell line stably expressing GFP-tagged LC3 protein. Green dots representing autophagosomes were quantified in MEC-1/GFP-LC3 cells under starvation by imaging flow cytometry (Image Stream, Amnis). Transfection with synthetic miR-130a reduced the autophagic flux in these cells compared to scrambled negative control miRNA (NC). Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2039-2039
Author(s):  
Holly Edwards ◽  
Chengzhi Xie ◽  
Alan Dombkowski ◽  
Maggie Keller ◽  
Mark Stout ◽  
...  

Abstract Abstract 2039 Poster Board II-16 Acute megakaryocytic leukemia (AMkL; M7) is a biologically heterogeneous form of AML, representing ∼10% of pediatric and 1-2% of adult AML cases. AMkL is the most common AML subtype of children with Down syndrome (DS). DS children with AMkL have an excellent prognosis with EFS rates of 80-100% when treated with ara-C/anthracycline-based protocols, in contrast to the <30% EFS rates of non-DS children with AMkL. This also contrasts to the ∼50% EFS rates of non-DS children with AML overall, indicating that AMkL is an extremely poor risk group amongst non-DS children with AML despite the use of intensive chemotherapy-based protocols. These clinical data make a compelling argument that new therapies are essential to improve the treatment outcome of this aggressive disease. Acquired somatic mutations of the transcription factor gene, GATA1 (localized to Xp11.23), have been detected uniformly in nearly all DS AMkL cases, but not in non-DS AML and non-AMkL DS leukemia cases. The net effect of GATA1 mutations is an introduction of early stop codons and synthesis of a shorter GATA1 protein (designated GATA1s) that has altered transactivation activity, potentially contributing to the uncontrolled proliferation of immature megakaryocytes. It is conceivable that the altered GATA1 function between DS and non-DS AMkL may account for differential expression of GATA1 target genes in these two groups of patients. On the other hand, overexpression of GATA1 in megakaryoblasts from non-DS children with AMkL compared to myeloblasts from non-DS children with other subtypes of AML may contribute to differences in chemotherapy sensitivity via regulation of GATA1 target genes. We previously reported that GATA1 mutations in DS AMkL are associated with decreased expression of cytidine deaminase (encodes an enzyme which can convert ara-C to ara-U, the inactive form of the drug), thus contributing to the enhanced ara-C sensitivity of DS AMkL blasts. Further, when GATA1 was ectopically expressed in a DS AMkL cell line, CMK, it caused significantly increased resistance to ara-C. In the present study, we confirmed overexpression of GATA1 in non-DS AMkL blasts compared to non-DS AML blasts by real-time RT-PCR quantitation of GATA1 transcripts in our cohort of patient samples. shRNA knockdown of GATA1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivities to ara-C and daunorubicin, the two main drugs used for AML treatment, and significantly increased basal level apoptosis. This was accompanied by significantly decreased Bcl-xL transcript and protein levels in the GATA1 shRNA knockdown clones compared to a shRNA negative control. Binding of GATA1 to the two GATA elements in Bcl-x promoter and transactivation of Bcl-x promoter activity by GATA1 was demonstrated by ChIP assays and luciferase reporter assays, respectively, in Meg-01 cells. In our cohort of non-DS AMkL and AML patient samples, significant overexpression of Bcl-xL in non-DS AMkL compared to non-DS AML cases and a significant correlation between Bcl-xL and GATA1 transcripts were detected. Besides Bcl-xL, additional GATA1 targets (e.g. TNF) related to apoptosis were also identified by gene expression and ChIP-on-ChIP microarray analyses. Interestingly, our microarray data also suggest that GATA1 may have an impact on PI3-kinase/Akt pathway through modulating directly or indirectly a group of genes within the pathway. Western blotting revealed increased phosphorylation of Akt in the GATA1 knockdown clones compared to the negative control cells. Previous studies reported that histone deacetylase inhibitors (HDACIs) treatment causes hyperacetylation and subsequent degradation of GATA1, suggesting that these agents may be effective in targeting GATA1 in AMkL. Treatment of Meg-01 cells with an HDACI, valproic acid (VPA), resulted in decreased protein levels for GATA1 and Bcl-xL and increased phosphorylation of Akt. Co-treatment of Meg-01 cells with VPA and ara-C resulted in synergistic induction of apoptosis and activation of caspase-3. This drug synergy was amplified when a non-toxic dose of the PI3-kinase inhibitor LY294002 was added. Our results demonstrate that GATA1 causes resistance to chemotherapy in non-DS AMkL by promoting AMkL blast survival through regulating its target genes. Treatment of AMkL may be improved by integrating HDACI and PI3-kinase or Akt inhibitors into the chemotherapy of this disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3737-3737
Author(s):  
Feda Azab ◽  
Abdel Kareem Azab ◽  
Aldo M. Roccaro ◽  
Antonio Sacco ◽  
Phong Quang ◽  
...  

Abstract Abstract 3737 Poster Board III-673 INTRODUCTION Waldenström macroglobulinemia (WM) is a low grade non-Hodgkin lymphoma, characterized by the presence of abnormal lymphoplasmacytic cells producing high levels of IgM. Although indolent, WM remains incurable, and therefore, there is an urgent need for rationally designed therapy in WM. Receptor tyrosine kinases (RTKs) are cell surface receptors for growth factors, cytokines and hormones which have a critical role in the development and progression of many types of cancer. However, their role in WM was not identified. TKI-258 (Novartis, Basel, Switzerland) is an ATP-competitive inhibitor with activity against (multiple) receptor tyrosine kinases including FGFR and other RTKs. We hypothesized that FGFR is up-regulated in WM and plays a major role in its progression; and that TKI-258 would reduce tumor progression in WM. METHODS AND RESULTS We tested the expression of FGFR3 on WM cells and found overexpression of this RTK compared to CD19+ cells from healthy donors. The activation of FGFR3 by recombinant FGF induced MAPK signaling pathway in WM cells including phosphorylation of RAF, ERK and STAT3. Also it induced PI3K signaling including phosphorylation of AKT, S6R and GSK3. TKI-258 inhibited the FGF induced activation of the MAPK and PI3K signaling pathways in a dose- response manner. Using MTT assay we tested the effect of TKI-258 ( 0 to 2.5 uM) on the survival of WM cell line BCWM-1, on IgM secreting cell line MEC-1, and on CD19+ cells selected from WM patient sample. We found that the TKI-258 induced cell death in all sample tested with an IC50 ranging 0.8-1 uM. Testing the effect of TKI-258 on the survival of CD19+ cells selected from peripheral blood or mononuclear cell from healthy donors showed a minimal effect of less than 10% cell death. These results provide a wide therapeutic window for the use of TKI-258 in WM. Moreover, we tested the effect of TKI-258 on the apoptosis of WM cells by flow cytometry using the apoptosis marker APO-2.7, and found that TKI-258 induced apoptosis of WM cells in a dose-response manner at both 24 and 48 treatment. Moreover these results were confirmed by testing changes in the expression of apoptosis related proteins in response to TKI-258 by immunoblotting, including induction of PARP, and caspase-3 and caspase-9 cleavage. In correlation with these results, cell cycle analysis by PI staining and analysis by flow cytometry of WM cells treated with TKI-258 for 24 hrs showed induction of sub-G1 increase in a dose response manner with an IC50 about 1uM. To test the effect of TKI-258 on the interaction of WM cells with the microenvironment we examined the effect of TKI-258 on adhesion of WM cells to fibronectin and bone marrow stromal cells (BMSCs), and found that TKI-258 induced a 50% decrease of adhesion. Moreover, we found no effect on the chemotaxis of WM induce by stroma derived factor-1 (SDF1). To test the direct effect of TKI-258 on the interaction with the microenvironment, we examined the proliferation of WM when cultured alone of in co-culture with BMSCs by 3H-thymidine uptake assay. We showed that TKI-258 inhibited the proliferation of WM cells with an IC50 of 0.8 uM, in the presence or absence of BMSCs. CONCLUSION In conclusion, we found an overexpression of FGFR3 in WM cells compared to CD19+ cells from healthy donors, and that TKI-258 inhibited the activation of proliferative pathways induced by activation of FGFR3 and led to inhibition of proliferation and apoptosis of WM cells. Disclosures: Ghobrial: Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chunli Xu ◽  
Qingke Bai ◽  
Chen Wang ◽  
Qiuyu Meng ◽  
Yuming Gu ◽  
...  

Background: MicroRNAs (miRNAs) have an increasing functional role in some neurodegenerative diseases. Autophagy, the degradation of bulk protein in the cytoplasm, is the quality control function of protein and has a protective role in the survival of neural cells. miR-433 may play a regulatory role in neurodegenerative diseases. Many aspects underlying the mechanism of miR-433 in neural development and neurodegeneration are not clear.Methods: In this study, we established stable cell lines expressing miR-433 by infecting mouse hippocampal neural cell line (HT-22) cells with rLV-miR-433 and the control rLV-miR. Pre-miR-433 expression was analyzed using polymerase chain reaction (PCR). Mature miR-433 expression was measured using quantitative PCR (qPCR). The effect of miR-433 overexpression on cell proliferation was determined using a CCK-8 assay and flow cytometry. RNA interference was used to analyze the function of Cdk12 in mediating the effect of miR-433 on cell proliferation. The effect of miR-433 overexpression on cell apoptosis was determined by flow cytometry. Autophagy-related genes Atg4a, LC3B, and Beclin-1 were determined using qPCR, Western blot, or immunofluorescence. In addition, RNA interference was used to analyze the effect of Atg4a on the induction of autophagy. TargetScan 7.2 was used to predict the target genes of miR-433, and Smad9 was determined using qPCR.Results: Our results indicated that miR-433 increased the expression of Atg4a and induced autophagy by increasing the expression of LC3B-Ⅱ and Beclin-1 in an Atg4a-dependent manner. In addition, miR-433 upregulated the expression of Cdk12 and inhibited cell proliferation in a Cdk12-dependent manner and promoted apoptosis in HT-22 cells under the treatment of 10-hydroxycamptothecin.Conclusion: The results of our study suggest that miR-433 may regulate neuronal growth by promoting autophagy and attenuating cell proliferation. This might be a potential therapeutic intervention in neurodegenerative diseases.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 492-492 ◽  
Author(s):  
Adrien Cosson ◽  
Elise Chapiro ◽  
Jérome Lambert ◽  
Hong-Anh Cung ◽  
Caroline Algrin ◽  
...  

Abstract Introduction: CLL is a heterogeneous disease in terms of response to treatment, with some patients reaching complete and prolonged remissions, while others relapsing early and requiring several lines of treatments. This highly variable course is partly explained by the existence of a heterogenic panel of genetic alterations (mutations, chromosomal abnormalities) that allow the development of drug-resistant aggressive CLL subclones. Therefore, a functional characterization of the cytogenetic alterations associated to CLL drug resistance may provide new means of improving the current therapeutic strategies. We and others have already reported that the gain of 2p (2p+) is recurrent in CLL. However, the candidate gained gene(s) on the 2p remain to be identified. Previously data: we have observed that the 2p gain is frequent in previously untreated CLL Binet stages B/C (21/132, 15.9%), and is associated with bad prognostic factors, such as 11q deletion (p=0.0008) and unmutated IGHV (p=0.02). Using a SNP-array approach, we have identified a minimally gained region of 1.28Mb on 2p16.1-15. This region included the gene CRM1/XPO1 (Chromosome Region Maintenance 1/Exportin-1), a gene also recurrently mutated in CLL. A qPCR assessment confirmed that XPO1 was overexpressed in the 2p+/CLL patients (1.4-fold increase compared to 2p-/CLL; p=0.02). The objective of our work was to identify the potential role of XPO1 in CLL drug resistance by using the selective XPO1 inhibitor Selinexor (KPT-330, provided by Karyopharm Therapeutics), which is currently in Phase II human clinical trials in hematological and solid cancers. Methods: We have analyzed 36 2p+/CLL and we have searched for XPO1 mutations in 436 CLL samples. CLL drug resistance associated to XPO1 overexpression/mutation was assessed by measuring the rate of programmed cell death (PCD) on cells from 2p- and wildtype (wt) XPO1/CLL (n=20), 2p+/XPO1 wt/CLL (n=8) and on XPO1 mut/CLL (n=6). After 24 hours treatment with Fludarabin + Cyclophosphamid + Rituximab (FCR), Ibrutinib (Ibru), Idelalisib + Rituximab (Ide+R) and Selinexor, cells were stained with Annexin-V and propidium iodide and PCD was assessed by flow cytometry. KPT-301 was used as a negative control. For the inhibition assay, the inhibitor Q-VD-Oph was added 30 min before inducing cell death. Mitochondrial membrane depolarisation was assessed using tetramethyllrhodamine ethyl ester probe and flow cytometry analysis. Results: (i) Using a FISH approach, we fully confirmed the gain of XPO1 in 2p+/CLL samples. Additionally, we found that the XPO1 gain was often subclonal, suggesting that it tends to arise late in leukemic development. Longitudinal FISH analyses, performed on 8 2p+/CLL-treated patients, showed a similar or increasing percentage of cells carrying XPO1 gain at relapse, when compared to diagnosis; (ii) XPO1 was mutated in 23/436 (5.3%) CLL and in 2/30 (6.7%) 2p+/CLL; (iii) Selinexor induced PCD in 2p-/XPO1 wt/CLL (35% of PCD). The results were similar in all tested CLL, independently of prognostic factors (del13q, tri12, del11q, del17p, IGHV status), while sparing the non leukemic cells from patients or B cells from healthy donors; (iv) Selinexor induced CLL PCD through a caspase-dependant apoptotic pathway, as evidenced by inhibition of cell death by Q-VD-Oph, and cleavage of the caspase-3. Selinexor also induced mitochondrial depolarization and was associated with upregulation and activation of the pro-apopototic Bax protein; (v) XPO1 mut/CLL were significantly resistant to PCD induced by Selinexor (p=0.003). In contrast, the mutations in XPO1 had no effect in FCR and Ibru PCD induction; (vi) 2p+/CLL cells were resistant to PCD induced by all tested drugs: FCR (p=0.01), Ibru (p=0.003), Ide+R (p=0.004) and Selinexor (p=0.0001). Conclusion: Our data show that 2p+/CLL is associated to FCR, Ibru and Ide+R drug resistance. Strikingly, Selinexor, a new XPO1 inhibitor, is unable to induce PCD in 2p+ and/or XPO1 mut CLL, which strongly suggests a key role for XPO1 in the CLL drug resistance associated to the 2p gain. Altogether, our work provide substantial progress in the understanding of the role of XPO1 in CLL drug resistance and suggests that the assessment of the 2p gain and the mutations in XPO1 will be considered before to decide a CLL therapy. As 2p gain could be observed in other B malignancies, it is tempting to extend these recommendations to all Selinexor treatments. Disclosures Choquet: Janssen: Consultancy; Roche: Consultancy. Leblond:Janssen: Consultancy, Honoraria, Speakers Bureau; GSK: Consultancy, Honoraria, Speakers Bureau; Gilead: Consultancy, Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Other: Travel, Accommodations, Expenses, Speakers Bureau; Mundipharma: Honoraria.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2504-2504 ◽  
Author(s):  
Xia Tong ◽  
Georgios V. Georgakis ◽  
Long Li ◽  
O’Brien Susan ◽  
Younes Anas ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (CLL) is characterized by in vivo accumulation of long-lived CD5+ B cells. However when cultured in vitro CLL cells die quickly by apoptosis. Protection from apoptosis in vivo is believed to result from supply of survival signals provided by cells in the microenvironment. We and others have previously reported that CLL cells express CD40 receptor, and that CD40 stimulation of CLL cells may rescue CLL cells from spontaneous and drug-induced apoptosis in vitro. These observations suggested that blocking CD40-CD40L pathway might deprive CLL cells from survival signals and induce apoptosis. To test this hypothesis, we have generated a fully human anti-CD40 blocking monoclonal antibody in XenoMousemice (Abgenix, Inc.). The antibody CHIR-12.12 was first evaluated for its effect on normal human lymphocytes. Lymphocytes from all 10 healthy blood donors did not proliferate in response to CHIR-12.12 at any concentration tested (0.0001 mg/ml to 10 mg/ml range). In contrast, activating CD40 on normal B-lymphocytes by CD40L induced their proliferation in vitro. Importantly, CHIR-12.12 inhibited CD40L- induced proliferation in a dose dependent manner with an average IC50 of 51 ± 26 pM (n=10 blood donors). The antagonistic activity of CHIR-12.12 was then tested in primary CLL samples from 9 patients. CHIR-12.12 alone did not induce CLL cell proliferation. In contrast, primary CLL cells incubated with CD40L, either resisted spontaneous cell death or proliferated. This effect was reversed by co-incubation with CHIR-12.12 antibody, restoring CLL cell death (n=9). CHIR-12.12 was then examined for its ability to lyse CLL cell line EHEB by antibody dependent cell mediated cytotoxicity (ADCC). Freshly isolated human NK cells from normal volunteer blood donors were used as effector cells. CHIR-12.12 showed lysis activity in a dose dependent manner and produced maximum lysis levels at 0.1 mg/ml. When compared with rituximab, CHIR-12.12 mediated greater maximum specific lysis (27.2 % Vs 16.2 %, p= 0.007). The greater ADCC by CHIR-12.12 was not due to higher density of CD40 molecules on CLL cell line compared to CD20 molecules. The CLL target cells expressed 509053 ±13560 CD20 molecules compared to 48416 ± 584 CD40 molecules. Collectively, these preclinical data suggest that CHIR-12.12 monoclonal antibody may have a therapeutic role in patients with CLL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 586-586
Author(s):  
Grzegorz S. Nowakowski ◽  
Yean K. Lee ◽  
Neil Kay

Abstract Background: We have previously shown that CLL B cells secrete vascular endothelial growth factor (VEGF) and express VEGF receptors: VEGFR-1 and VEGFR-2. Secreted VEGF protects CLL B cells from spontaneous and drug induced apoptosis via increased levels of Mcl-1 and XIAP; however, the exact mechanism of this process is unknown. In solid tumors, there is increasing evidence that signaling through VEGF receptor known as neuropillin-1 (NRP-1) is critical for VEGF induced resistance to apoptosis. Hypothesis: NRP-1 is expressed by CLL B cells and is critical for VEGF mediated protection from apoptosis. Methods: To demonstrate the presence of NRP-1 on CLL B cells, we conducted flow cytometry and immunoblotting. We then evaluated the ability of NRP-1 blocking antibodies to induce apoptosis of primary CLL B cells. To do this, circulating CLL B cells were isolated by density gradient centrifugation. Patient samples with greater than 80% of CD5+ CD19+ cells in a mononuclear cell population, as assessed by flow cytometry, were cultured in AIM-V media in 24-well plates at 1.5 x 106 cells/mL. To occupy NRP-1, we added NRP-1 blocking antibodies (Calbiochem, Darmstadt, Germany) at increasing concentrations (0.5 μg/mL -10 μg/mL) to cultured CLL B cells. Cell death was assessed using an annexin and propidium iodide flow assay after 24 h of in vitro culture. CLL cells cultured without antibodies and isotype nonspecific monoclonal antibodies were used as controls. Results: CLL B cells were found to express NRP-1 but not uniformly. Most patients had flow positive evidence for NRP-1 but a distinct percentage (35%) was very low (≤5%) or negative. However, immunoblot analysis revealed moderate to low levels of NRP-1 protein with evidence of tyrosine phosphorylation in all tested CLL patients (N=9). NRP-1 blocking antibodies, but not VEGF-R1 and -R2 blocking antibodies, induced apoptosis in a dose dependent manner in primary CLL cells (n=5, FIG.) at antibody concentrations starting at 1 μg/mL (p=0.003). The effect of the NRP-1 blockade varied between patients, with a median IC50, 1.5 μg/mL (range 0.5–2 μ/mL). Importantly, concentrations of 5 μg/mL and higher induced apoptosis in more than 90% of the CLL B cells. We also found that the sensitivity of CLL B cells to NRP-1 blocking antibody, in terms of apoptosis induction, was correlated with the number of NRP-1 receptors as assessed by flow cytometry. CLL B cell clones with no detectable NRP-1 had no induction of cell death when exposed to the NRP-1 blocking antibody. Finally, immunoprecipitation and immunoblot assays indicated that NRP-1 physically interacted with VEGF-R2 on CLL B cells. This suggests that NRP-1 could be enhancing VEGF binding affinity on VEGF-R2 to further increase the ability of VEGF to generate signals that lead to apoptosis modulation. Conclusion: We have found that NRP-1 blocking antibodies induce cell death in NRP-1 positive CLL B cells. Similar results using NRP-1 blocking peptides rather than blocking antibodies have been observed in breast cancer (Br J Cancer.2005 Jan 31;92(2):328–33). Our results suggest that NRP-1 represents an attractive therapeutic target in CLL and should be explored further. Figure Figure


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2351-2351
Author(s):  
Julie M. Roda ◽  
Rosa Lapalombella ◽  
Robert Baiocchi ◽  
Eugene Zhukocsky ◽  
John Desjarlais ◽  
...  

Abstract CD19 is a B cell lineage-specific transmembrane signaling protein that controls differentiation and proliferation. CD19 is an attractive therapeutic target due to its high level of expression in numerous B cell malignancies, as well as its lack of expression on non-B cells. Here we report the in vitro anti-tumor activity of a novel humanized monoclonal anti-CD19 Ab (CD19-IgG1, aka XENP5603) and its Fc engineered counterpart (XmAb™CD19, aka XENP5574). XENP5603 induced direct apoptosis in normal CD19+ B cells, but not NK cells, T cells, or monocytes, as determined by flow cytometric staining with annexin V and propidium iodide. XENP5603 also induced significant levels of apoptosis in a number of lymphoblastoid cell lines, including Ramos, Raji, 697, NALM6, and RS4;11 cells. Treatment of primary chronic lymphocytic leukemia (CLL) cells with XENP5603 induced significant cell death in all patients tested (mean, 36% apoptotic cells at 24 hours; range, 13–66%, p &lt; 0.001). Similar apoptosis was noted in cells from a subset of patients (4 of 9) with CD19+ primary acute lymphoblastic leukemia (ALL). Apoptosis of CLL cells treated with XENP5603 was not associated with cleavage of caspase-3, caspase-8, caspase-9, or PARP, but was associated with upregulation of Bim, suggesting a caspase-independent mechanism of cell death. NK cells from normal donors exhibited high levels of ADCC in response to B cell lines coated with XENP5603. Furthermore, NK cells from CLL patients mediated significant ADCC against autologous CLL cells in the presence of XENP5603 (mean, 15% specific lysis at an E:T ratio of 25:1; range, 8–24%; p = 0.04 vs. the negative control Ab). ADCC activity was further increased in the presence of XENP5574, which has the same antigen-recognition sequences as XENP5603 but which contains two mutations in the Fc region that increase FcγRIIIa affinity (mean, 39% specific lysis at an E:T ratio of 25:1; range, 29–51%; p = 0.02 vs. the negative control Ab). ADCC mediated by either CD19 Ab was also significantly higher than that mediated by an equivalent concentration of rituximab (mean, 39% specific lysis with XENP5574 vs. 12% with rituximab; p &lt; 0.001). ADCC in the presence of either Ab was further increased in the presence of the NK cell-activating cytokine IL-2, suggesting that these antibodies might be effectively combined with immune stimulatory adjuvants. Furthermore, NK cell ADCC against CLL cells in the presence of CD19 Abs was found to be dependent on perforin/granzyme release, as treatment with 3,4-dichloroisocoumarin (which inhibits granzyme enzymatic activity) or EGTA (which prevents release of cytotoxic vesicles) potently inhibited ADCC activity. Collectively, these studies provide evidence of the autologous innate immune-mediated cytotoxicity and direct apoptotic activity of XENP5603 and XENP5574. In addition, engineering to enhance FcγRIIIa binding enhances autologous ADCC, providing support for further pre-clinical development of XENP5574 in CD19+ malignancies, including CLL and ALL.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1728-1728
Author(s):  
Cinzia Bologna ◽  
Roberta Buonincontri ◽  
Sara Serra ◽  
Tiziana Vaisitti ◽  
Valentina Audrito ◽  
...  

Abstract Human SLAMF1 (signaling-lymphocytic-activation-molecule-family1, CD150) is a self-ligand adhesion/co-stimulatory molecule wich belongs to a family of 9 receptors. SLAMF1 is also a microbial sensor, as it regulates Gram- bacterial phagosome functions through an ubiquitous cellular autophagic machinery and serves as a receptor for Measles virus. In this work, we investigated expression and function of SLAMF1 in chronic lymphocytic leukemia (CLL) cells. Results indicate that expression of SLAMF1 is lost in a subset of patients with chronic lymphocytic leukemia characterized by an aggressive form of the disease, with shorter time to first treatment (median 2.2 years in SLAMF1- vs 7.6 in SLAMF1+ patients, P=.001) and overall survival (77.5% survival rate at 10 years in SLAMF1- vs 94.7% years in SLAMF1+ patients, P=.036). Consistently, SLAMF1low CLL patients are characterized by clinical or molecular markers of a more aggressive disease. Stable silencing of SLAMF1 in the CLL-like Mec-1 cell line (constitutively SLAMF1+) modulated pathways related to cell migration, cytoskeletal organization and intracellular vesicle formation/recirculation. Decreased expression of CXCR3 and an increased expression of CXCR4, CD38 and CD44 were maintained at the molecular level, likely explaining why SLAMF1- cells show enhanced chemotactic responses to CXCL12. This phenotype was confirmed in primary cells, by comparing a cohorts of SLAMF1high to one of SLAMF1low patients. Gene expression profiling also indicates profound modulation of pathways connected with vesicle formation and recirculation. Consistently, cross-linking of SLAMF1 with an agonisic mAb in primary cells and in the Mec-1 cell line enhanced the generation of autophagic vesicles and their fusion with the lysosomes. Ligation of SLAMF1 with this agonistic monoclonal antibody promoted the autophagic flux, by increasing accumulation of reactive oxygen species (ROS) and inducing phosphorylation of p38, JNK1/2 and bcl-2. The direct consequence was the formation of the autophagy macro-complex containing SLAMF1, the scaffold protein beclin1 and the enzyme Vps34. In agreement with the observation that many drugs used in CLL have autophagy-mediated effects, including fludarabine and the BH3 mimetic ABT-737, SLAMF1-silenced Mec-1 cells or SLAMF1low primary CLL cells were resistant to treatment with both agents. These results indicate that SLAMF1 plays as a critical role in CLL homeostasis. Loss of SLAMF1 expression modulates genetic pathways that regulate chemotaxis and autophagy and that potentially affect drug responses, thus providing a likely explanation for the unfavorable clinical outcome experienced by this patient subset. Restoring SLAMF1 expression in CLL cells would therefore be of therapeutic value for patients with aggressive CLL. Disclosures Gaidano: Morphosys, Roche, Novartis, GlaxoSmith Kline, Amgen, Janssen, Karyopharm: Honoraria, Other: Advisory boards; Celgene: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4930-4930
Author(s):  
Joshua Acklin ◽  
Mitra Azadniv ◽  
Scott Portwood ◽  
Kimberly Lacagnina ◽  
Charlotte Beers ◽  
...  

Abstract Introduction : Mammalian target of rapamycin (mTOR) signaling has previously been identified as a possible therapeutic target in acute myelogenous leukemia (AML), as the PI3K/AKT/mTOR pathway has been shown to be upregulated in blasts of up to 90% of AML cases through the constitutive loss of the tumor suppressor PTEN. The activation of this pathway is implicated in synthesis of prosurvival transcription and translational factors responsible for cellular resistance to apoptosis, resistance to chemotherapy, and enhanced survival in the marrow microenvironment. Unfortunately, exploitation of this pathway has been largely ineffective in clinical studies. A second mTOR complex (mTORC2) will reestablish the activation of the first when the first mTOR complex (mTORC1) is shut down under treatment with traditional rapalogs, such as rapamycin and everolimus. Additionally, the cellular process of autophagy has been postulated to be a protective mechanism for leukemic blasts during treatment with mTOR inhibitors, therefore decreasing their efficacy. For these reasons, this work explores means to optimize mTOR pathway inhibition by examining effects of dual mTORC inhibition (OSI027), dual PI3K/mTOR inhibition (BEZ235/Dactilosib), combination of mTOR inhibitors with a histone deacetylase inhibitor with ability to inhibit AKT (LBH589/Panobinostat), and the combination of mTOR inhibitors with hypomethylating agents able to overcome the hypermethylation of mTOR pathway components such as TSC1, TSC2 and PTEN (decitabine/5-azacytidine). Materials and Methods : Primary AML leukapheresis samples obtained with informed consent were cultured for 48 hours in the presence of OSI027, LBH589 (Novartis), BEZ235 (Novartis), decitabine, or OSI027 in combination with each of these individual inhibitors and compared with control culture conditions. Cells were stained with annexinV and DAPI as previously described, and the percent of living, pre-apoptotic, necrotic and dead cells were determined via flow cytometry. Synergy calculations were completed using Calcusyn™ software as described by Chao and Talalay (1977). Autophagic flux was determined in the OSI027 and LBH589 combination exposure via flow cytometry using anti-LC3. Lastly, protein expression under treatment with various combinations was determined via standard western blotting techniques. Results: The MV411 AML cell line was utilized to establish efficacy of combination exposures. These cells expressed phosphorylated (p)Akt (ser 473), p4EBP1, and pmTOR. OSI027 10µM, LBH589 1µM, and BEZ235 10nM were able to inhibit pmTOR, pAKT, and p4EBP1 expression as determined by western blotting. In the MV411 cell line, IC50s were determined, and combination indices were determined for OSI027+BEZ235, panobinostat+BEZ235, and panobinostat+OSI027; all of which demonstrated synergy. In primary AML samples, the combination of OSI027 10uM and LBH589 10nM significantly increased the percentage of dead cells in comparison to OSI027 treatment alone. Additionally in primary AML blasts, pmTOR and pAKT expression were decreased in the combination of OSI027 and LBH589 when compared to single agent treatment via western blot. The combination of OSI027 and LBH589 demonstrated a significant reduction in the autophagic flux in comparison to OSI027 treatment alone, suggesting an anti-autophagic effect, which correlates with the increased rates of cellular death in the combination. It was also found in AML cell lines that the combination of 10 µM azacytidine and 100 nM rapamycin resulted in synergistic suppression of U937, MV411, and KG1a survival as measured by MTT. No synergy was noted in the HL60 cell line. This combination effectively suppressed CFU-L in primary AML cases and suppressed p70S6K and p4EBP1 expression more than either agent alone by western blotting. The combination of decitabine 500nM with OSI027 10uM did not demonstrate an increase in apoptotic cells in primary blasts compared to OSI027 alone. Conclusions : Based on these findings, we conclude that mTOR inhibition in AML cell lines and primary samples can be enhanced through dual mTORC inhibition, PI3K modulation, and histone deacetylase inhibition. This may occur through suppression of activated pathway mediators or through suppression of autophagic flux. These results suggest that there is merit in exploring these combinations for therapeutic potential in AML. Disclosures Portwood: ImmunoGen: Research Funding. Wang:ImmunoGen: Research Funding.


2021 ◽  
Author(s):  
Léa Montégut ◽  
Hui Chen ◽  
Gerasimos Anagnostopoulos ◽  
Sabrina Spaggiari ◽  
Oliver Kepp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document