Gene Regulatory Networks Governing Hematopoietic Stem Cell Development and Identity

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-30-SCI-30 ◽  
Author(s):  
Tariq Enver

Abstract Abstract SCI-30 Several studies have addressed questions about transcriptional regulation within particular hematopoietic cell compartments. Few, however, have attempted to capture the transcriptional changes that occur during the dynamic transition from one compartment to another. We have profiled gene expression as multipotential progenitors underwent commitment and differentiation to two alternative lineages, focusing on the first 3 days of differentiation when the majority of decisions about cell fate are made. We have combined this with genome-wide identification of the targets of three key transcription factors before and after differentiation; GATA-2, usually associated with the stem/progenitor compartment; GATA-1 (erythroid); and PU.1 (myeloid). These data have been compiled into a custom-made queryable database, designed to be intuitive to use and to provide tools to interrogate the data on many levels. We used correlation analyses to associate transcription factor binding with particular modules of co-expressed genes, alongside detailed sequence analysis of bound regions. These approaches have informed our understanding of GATA factor switching, and highlighted novel roles for both GATA-2 and Pu.1 in erythroid cells. Overall, the data reveal greater degree of complexity in the interplay between these three factors in regulating hematopoiesis than has hitherto been described, and highlights the importance of a genome-wide approach to understanding complex regulatory systems. A significant challenge in the field is how to relate these types of population-based data to the action of transcriptional regulators within single cells where cell fate decisions ultimately are affected. As a step toward this, we have generated single cell profiles of gene expression for a limited set of transcriptional regulators in self-renewing and committed blood cells and used these data to build a stochastic computational model, which affords exploration of commitment scenarios in silico. Disclosures: No relevant conflicts of interest to declare.

2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


Blood ◽  
2006 ◽  
Vol 107 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Hyung Chan Suh ◽  
John Gooya ◽  
Katie Renn ◽  
Alan D. Friedman ◽  
Peter F. Johnson ◽  
...  

AbstractC/EBPα is an essential transcription factor required for myeloid differentiation. While C/EBPα can act as a cell fate switch to promote granulocyte differentiation in bipotential granulocyte-macrophage progenitors (GMPs), its role in regulating cell fate decisions in more primitive progenitors is not known. We found increased numbers of erythroid progenitors and erythroid cells in C/EBPα–/– fetal liver (FL). Also, enforced expression of C/EBPα in hematopoietic stem cells resulted in a loss of erythroid progenitors and an increase in myeloid cells by inhibition of erythroid development and inducing myeloid differentiation. Conditional expression of C/EBPα in murine erythroleukemia (MEL) cells induced myeloid-specific genes, while inhibiting erythroid-specific gene expression including erythropoietin receptor (EpoR), which suggests a novel mechanism to determine hematopoietic cell fate. Thus, C/EBPα functions in hematopoietic cell fate decisions by the dual actions of inhibiting erythroid and inducing myeloid gene expression in multipotential progenitors.


2020 ◽  
Author(s):  
Anna Pretschner ◽  
Sophie Pabel ◽  
Markus Haas ◽  
Monika Heiner ◽  
Wolfgang Marwan

AbstractDynamics of cell fate decisions are commonly investigated by inferring temporal sequences of gene expression states by assembling snapshots of individual cells where each cell is measured once. Ordering cells according to minimal differences in expression patterns and assuming that differentiation occurs by a sequence of irreversible steps, yields unidirectional, eventually branching Markov chains with a single source node. In an alternative approach, we used multinucleate cells to follow gene expression taking true time series. Assembling state machines, each made from single-cell trajectories, gives a network of highly structured Markov chains of states with different source and sink nodes including cycles, revealing essential information on the dynamics of regulatory events. We argue that the obtained networks depict aspects of the Waddington landscape of cell differentiation and characterize them as reachability graphs that provide the basis for the reconstruction of the underlying gene regulatory network.


2020 ◽  
Author(s):  
T. Lohoff ◽  
S. Ghazanfar ◽  
A. Missarova ◽  
N. Koulena ◽  
N. Pierson ◽  
...  

AbstractTranscriptional and epigenetic profiling of single-cells has advanced our knowledge of the molecular bases of gastrulation and early organogenesis. However, current approaches rely on dissociating cells from tissues, thereby losing the crucial spatial context that is necessary for understanding cell and tissue interactions during development. Here, we apply an image-based single-cell transcriptomics method, seqFISH, to simultaneously and precisely detect mRNA molecules for 387 selected target genes in 8-12 somite stage mouse embryo tissue sections. By integrating spatial context and highly multiplexed transcriptional measurements with two single-cell transcriptome atlases we accurately characterize cell types across the embryo and demonstrate how spatially-resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary and the developing gut tube. Our spatial atlas uncovers axes of resolution that are not apparent from single-cell RNA sequencing data – for example, in the gut tube we observe early dorsal-ventral separation of esophageal and tracheal progenitor populations. In sum, by computationally integrating high-resolution spatially-resolved gene expression maps with single-cell genomics data, we provide a powerful new approach for studying how and when cell fate decisions are made during early mammalian development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anna Pretschner ◽  
Sophie Pabel ◽  
Markus Haas ◽  
Monika Heiner ◽  
Wolfgang Marwan

Dynamics of cell fate decisions are commonly investigated by inferring temporal sequences of gene expression states by assembling snapshots of individual cells where each cell is measured once. Ordering cells according to minimal differences in expression patterns and assuming that differentiation occurs by a sequence of irreversible steps, yields unidirectional, eventually branching Markov chains with a single source node. In an alternative approach, we used multi-nucleate cells to follow gene expression taking true time series. Assembling state machines, each made from single-cell trajectories, gives a network of highly structured Markov chains of states with different source and sink nodes including cycles, revealing essential information on the dynamics of regulatory events. We argue that the obtained networks depict aspects of the Waddington landscape of cell differentiation and characterize them as reachability graphs that provide the basis for the reconstruction of the underlying gene regulatory network.


2018 ◽  
Author(s):  
Sarah J. Hainer ◽  
Ana Bošković ◽  
Oliver J. Rando ◽  
Thomas G. Fazzio

SUMMARYMajor cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small cell populations within developing embryos. To understand how TFs regulate cell fate it is important to identify their genomic binding sites in these populations. However, current methods cannot profile TFs genome-wide at or near the single cell level. Here we adapt the CUT&RUN method to profile chromatin proteins in low cell numbers, mapping TF-DNA interactions in single cells and individual pre-implantation embryos for the first time. Using this method, we demonstrate that the pluripotency TF NANOG is significantly more dependent on the SWI/SNF family ATPase BRG1 for association with its genomic targets in vivo than in cultured cells—a finding that could not have been made using traditional approaches. Ultra-low input CUT&RUN (uliCUT&RUN) enables interrogation of TF binding from low cell numbers, with broad applicability to rare cell populations of importance in development or disease.


2021 ◽  
Author(s):  
Chang-Mei Liu ◽  
Shang-Kun Dai ◽  
Pei-Pei Liu ◽  
Zhao-Qian Teng

Metabolites such as crotonyl-CoA and lactyl-CoA influence gene expression through covalently modifying histones, known as histone lysine crotonylation (Kcr) and histone lysine lactylation (Kla). However, we do not know their dynamic changes, biological functions and associations with histone lysine acetylation (Kac) in vivo and during development. Here, we profile H3K9ac, H3K9cr and H3K18la in the developing telencephalon, and find that genome-wide alterations of these histone marks collaboratively regulate transcriptome remodelling to favour neural differentiation. We also demonstrate that global histone Kcr and Kla levels are not affected by transcription inhibition. Importantly, we identify HDAC1-3 as novel erasers of H3K18la and furtherly show that a selective inhibitor of HDAC1-3, MS-275 promotes transcriptional programs associated with neural cell fate decisions via H3K18la. Taken together, our results uncover the interplays between histone lysine acylations to regulate gene expression and the differentiation-promoting functions of histone Kcr and Kla during development.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Diana M Ho ◽  
SK Pallavi ◽  
Spyros Artavanis-Tsakonas

Notch signaling controls a wide range of cell fate decisions during development and disease via synergistic interactions with other signaling pathways. Here, through a genome-wide genetic screen in Drosophila, we uncover a highly complex Notch-dependent genetic circuitry that profoundly affects proliferation and consequently hyperplasia. We report a novel synergistic relationship between Notch and either of the non-receptor tyrosine kinases Src42A and Src64B to promote hyperplasia and tissue disorganization, which results in cell cycle perturbation, JAK/STAT signal activation, and differential regulation of Notch targets. Significantly, the JNK pathway is responsible for the majority of the phenotypes and transcriptional changes downstream of Notch-Src synergy. We previously reported that Notch-Mef2 also activates JNK, indicating that there are commonalities within the Notch-dependent proliferation circuitry; however, the current data indicate that Notch-Src accesses JNK in a significantly different fashion than Notch-Mef2.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 245-245
Author(s):  
Jung-Mi Lee ◽  
Bryan Goddard ◽  
Ashwini S. Hinge ◽  
Bruce J. Aronow ◽  
Nathan Salomonis ◽  
...  

Abstract Obesity is a complex pathological state defined by the excessive accumulation of adipose tissue and an array of hormonal, immunological and metabolic dysregulations. As such, obesity is a systemic stress that directly affects numerous organs and tissues. Notably, obesity and its sequelae modulate the immune system and the hematopoietic activity in the bone marrow (BM). Not surprisingly, obesity is also a well-established risk factor for leukemia associated with increased incidence and poor prognosis. However, despite their clinical relevance, mechanisms by which obesity affects the hematopoietic system remain elusive. Particularly, the impact of obesity on the hematopoietic stem cell (HSC) compartment has not been described. Using genetic and dietary mouse models of obesity, we conducted a "HSC-centered study" to determine how obesity affects HSCs and how these cells develop specific compensatory mechanisms to respond to this environment. Although HSCs in an obese environment displayed limited phenotypic and functional perturbations at steady state, they showed an aberrant response to hematopoietic stresses. In serial competitive transplantation assays, obesity-primed HSCs (defined as Lin- Sca-1+ c-Kit+ CD48- CD150+) showed a higher level of engraftment than controls in primary recipient mice (control, 20.8% +/-6.2 vs obese, 45.5% +/-14.6, p=0.022) but a dramatically reduced level of engraftment in secondary recipient mice (control: 25.8% +/-14.0 vs obese: 5.4% +/-3.9, p=0.033). Interestingly, BM analysis of secondary recipients showed reduced chimerism in all hematopoietic compartments but not in the HSC compartment. Altogether these results uncovered a biphasic behavior of the obesity-primed HSCs, characterized by an excessive differentiation response followed by a functional decline in which HSCs self-renew but fail to produce downstream progenitors. To unveil the molecular mechanisms involved in this aberrant activity, we performed a genome-wide gene expression analysis on HSCs isolated from normal and obese mice. Although the phenotype observed upon serial transplantation partially mimics HSC aging, obesity-primed HSCs did not share the molecular signature of old HSCs. Furthermore, down-regulation of interferon response-related genes (e.g Irak4, Irf7, Ifi27) and stress response-related genes (e.g. Stip1, Cgrrf1) showed that, unlike what has been described for committed progenitors, HSCs do not elicit a dramatic response to the inflammatory environment associated with obesity. In contrast obesity leads to the activation of specific molecular programs in HSCs. Firstly, obesity-primed HSCs showed up-regulation of multiples genes involved in the phosphatidylinositol signaling pathway (e.g. Pi4ka, Pi4k2b, Pi3kap1, Pi3kip1). Phosphoflow cytometry analysis indicated that this gene expression pattern was associated with the constitutive activation of the protein kinase AKT. While AKT activation is linked to functional HSC exhaustion, obesity-primed HSCs appeared refractory to this signal, suggesting the existence of compensatory mechanisms that protect the integrity of the HSCs in an obese environment. In parallel, we found that the aberrant activity of the obesity-primed HSCs was correlated with an elevated expression of Gfi1, a transcription factor critical for HSC quiescence and differentiation. Interestingly, the 2-fold increase in Gfi1 expression (p<10-5) observed in obesity-primed HSCs was maintained after serial transplantations in normal recipient mice indicating that the obese environment was able to promote the selection of a stable molecular program in the HSC compartment. Consistent with this idea, single-cell genome-wide analyses suggested a significant clonal shift within the obesity-primed HSC compartment. Finally, consistent with epidemiological data, we found that disruption of HSC homeostasis by obesity promotes the development of spontaneous hematopoietic pathologies resembling to myeloproliferative diseases. Altogether, our results establish the long lasting impact of obesity on the HSC compartment and uncover potential molecular mechanisms linking obesity to hematological diseases. Notably our results support the intriguing possibility that obesity, by directly acting on the HSC compartment, contributes to the development of a clonal hematopoiesis and favors the emergence of aberrant HSC clones. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document