Human CLL Intraclonal Fractions Differ in Their Abilities to Respond to, Elicit, and Suppress Pro-Engraftment and Growth Signals From Autologous T Cells in a Murine Adoptive Transfer Model

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 316-316
Author(s):  
Shih-Shih Chen ◽  
Piers E.M. Patten ◽  
Rita Simone ◽  
Sonia Marsilio ◽  
Jacqueline C. Barrientos ◽  
...  

Abstract Abstract 316 Chronic lymphocytic leukemia (CLL) clones contain activated/proliferative leukemic cells in lymphoid tissues and resting cells in the periphery. Different subsets of CLL cells have distinct proliferation rates. Recently divided “proliferative” cells have a surface membrane phenotype of CXCR4DIMCD5BRIGHT (CXCR4DIM) and contain higher numbers of CD38+ and Ki-67+ cells. Circulating “resting” CLL cells express CXCR4BRIGHTCD5DIM (CXCR4BR) and genetic signatures of older, quiescent cells that need to home to lymphoid tissues or die. CXCR4DIM and CXR4BR subsets are relatively minor (1–10% of total) components of CLL clones, with the major fraction (≥90%) of CLL cells having intermediate levels of CXCR4 and CD5 (CXCR4INT). Based on these differences, we proposed a model of transitioning CXCR4DIM → CXCR4INT → CXCR4BR CLL cells in the blood. Because higher birth rates correlate with more aggressive disease, and transiting back to solid tissues permits clonal survival and re-activation, this model suggests CXCR4DIM and CXCR4BR subsets as therapeutic targets. Aiming to further understand functional differences in CLL subsets in vitro and in vivo, we found that CLL subsets differ in cell size (CXCR4DIM>CXCR4INT>CXCR4BR), in vivo apoptosis and transmigration in vitro (both CXCR4DIM< CXCR4INT< CXCR4BR). Thus, while more CXCR4BR cells undergo apoptosis, CXCR4BR cells can migrate better to tissues to receive survival signals. In vivo functional differences were then studied in a NOD/SCID/γcnull (NSG) mouse model using pre-activated CLL-derived autologous T cells. Primary CLL blood cells from 1 M-CLL and 2 U-CLL patients were sorted for CXCR4BR, CXCR4INT or CXCR4DIM fractions. Each fraction (5×106 cells) was injected into NSG mice with 5×105 CD3/28-activated autologous T cells. At weeks 2–6 post transfer, blood analyses showed more extensive expansion of CLL B and T cells in mice received CXCR4DIM than in those injected with CXCR4BR or CXCR4INT. At weeks 9–12, mice were sacrificed. Although T cells dominated in blood, spleen and bone marrow of all recipients, a larger fraction of CLL B cells existed in CXCR4BR injected mice, suggesting better long-term CLL cell engraftment capacity of this fraction. Because regulation of T cells plays key roles in CLL cell survival/growth in patients and in the NSG adoptive transfer model, we next analyzed the same fractions for their abilities to activate T cells and elicit help for engraftment and growth. Unactivated CD5+ T cells (1–1.5×105) and B-CLL fractions (3–5×106 cells) were sorted from 6 patient samples (3 U-CLL and 3 M-CLL), injected into mice and followed bi-weekly until week 6. In 5 cases, except one with few CXCR4BR and CXCR4DIM cells, CXCR4DIM injected mice had more extensive T cell growth starting from week 2. Mice injected with CXCR4BR from 2 U-CLL cases also showed T cell expansions, but at comparatively lesser levels and at later time points (from week 4–5). At week 6, CLL B cells were found in spleen and bone marrow in mice with activated T cells; the numbers of CLL B cells correlated with T cell numbers. Also, identical CXCR4 levels were found in CLL cells regardless of origination from CXCR4BR or CXCR4DIM. Notably, no human B or T cells were detected in CXCR4INT injected mice. In fact, adding CXCR4INT cells to CXCR4DIM mice suppressed CXCR4DIM induced T cell expansion and cytokine production. Specifically, mice receiving both CXCR4DIM and CXCR4INT cells had diminished T cell expansion and at least 3 fold reduced serum levels of IFNγ and IL5. Overall, our data confirm the need for activated T cells for CLL B cell growth in mice; suggest superior long term CLL B cell engraftment by CXCR4BR cells with activated T cell support, and identify a greater ability of CXCR4DIM cells to activate autologous T cells, although some U-CLL CXCR4BR cells could do so to a lesser degree. Superior activation of T cells by CXCR4DIM B cells may be due to higher numbers of CD23+, CD25+, CD27+, CD29+ and CD44+ cells in CXCR4DIM fraction that facilitate cellular interactions. Finally, unlike CXCR4BR and CXCR4DIM cells, the major fraction in patient blood, CXCR4INT, inhibited T cell activation. These results indicate previously unappreciated levels of intraclonal CLL cell heterogeneity that may have important clinical relevance, allow more precise biologic analyses, and provide a rationale for preferential therapeutic targeting of these fractions. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


Blood ◽  
2021 ◽  
Author(s):  
JongBok Lee ◽  
Dilshad H. Khan ◽  
Rose Hurren ◽  
Mingjing Xu ◽  
Yoosu Na ◽  
...  

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent, Azacytidine, achieves complete response with or without count recovery in approximately 70% of treatment-naïve elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that Venetoclax directly activated T cells to increase their cytotoxicity against AML in vitro and in vivo. Venetoclax enhanced T cell effector function by increasing ROS generation through inhibition of respiratory chain supercomplexes formation. In addition, Azacytidine induced a viral-mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T-cell mediated cytotoxicity. Similar findings were seen in patients treated with Venetoclax as this treatment increased ROS generation and activated T cells. Collectively, this study demonstrates a new immune mediated mechanism of action for Venetoclax and Azacytidine in the treatment of AML and highlights a potential combination of Venetoclax and adoptive cell therapy for patients with AML.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


1982 ◽  
Vol 156 (5) ◽  
pp. 1486-1501 ◽  
Author(s):  
Y Kohno ◽  
J A Berzofsky

We studied the genetic restrictions on the interaction between T cells, B cells, and antigen-presenting cells (APC) involved in the H-2-linked Ir gene control of the in vitro secondary antibody response to sperm whale myoglobin (Mb) in mice. The B cells in this study were specific for Mb itself, rather than for a hapten unrelated to the Ir gene control, as in many previous studies. Low responder mice immunized in vivo with Mb bound to an immunogenic carrier, fowl gamma globulin (F gamma G), produced B cells competent to secrete anti-Mb antibodies in vitro if they received F gamma G-specific T cell help. However, (high-responder X low responder) F1 T cells from Mb-immune mice did not help these primed low responder (H-2k or H-2b) B cells in vitro, even in the presence of various numbers of F1 APC that were demonstrated to be component to reconstitute the response of spleen cells depleted by APC. Similar results were obtained with B6 leads to B6D2F1 radiation bone marrow chimeras. Genotypic low responder (H-2b) T cells from these mice helped Mb-primed B6D2F1B cells plus APC, but did not help syngeneic chimeric H-2b B cells, even in the presence of F1 APC. In contrast, we could not detect any Ir restriction on APC function during these in vitro secondary responses. Moreover, in the preceding paper, we found that low responder mice neonatally tolerized to higher responder H-2 had competent Mb-specific helper T cells capable of helping high responder but not low responder B cells and APC. Therefore, although function Mb-specific T cells and B cells both exist in low responder mice, the Ir gene defect is a manifestation of the failure of syngeneic collaboration between these two cell types. This genetic restriction on the interaction between T cells and B cells is consistent with the additional new finding that Lyb-5-negative B cells are a major participant in ths vitro secondary response because it is this Lyb-5-negative subpopulation of B cells that have recently been shown to require genetically restricted help. The Ir gene defect behaves operationally as a failure of low responder B cells to receive help from any source of Mb-specific T cells either high responder, low responder, or F1. The possible additional role of T cell-APC interactions, either during primary immunization in vivo or in the secondary culture is discussed.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3343-3349 ◽  
Author(s):  
BK Link ◽  
GJ Weiner

Abstract Bispecific monoclonal antibodies (bsabs) recognizing both CD3 and a tumor antigen can redirect T-cell-mediated cytotoxicity toward cells bearing that antigen. Such bsabs have been shown to be more effective than monospecific monoclonal antibodies (MoAbs) at preventing tumor growth in animal models of B-cell malignancy. The current studies describe the production and preliminary evaluation of a bsab designed to induce the lysis of malignant human B cells by human T cells. The bsab was obtained from a hybrid-hybridoma cell line produced by fusing OKT3-secreting hybridoma cells with hybridoma cells that secrete 1D10. 1D10 is an MoAb that recognizes an antigen found on a majority of malignant human B cells that has not been detected to a significant degree on normal resting or activated lymphocytes. High performance liquid chromatography (HPLC) was used to separate bsab from monospecific antibodies that were also present in the hybrid-hybridoma antibody product. The bsab was then evaluated in vitro for its ability to induce lysis of malignant B cells by activated T cells. The bsab consistently induced extensive lysis in vitro of 1D10 (+) cells, including both cell lines and cells obtained from patients with a variety of B-cell malignancies. No such effect was seen with activated T cells alone or activated T cells with monospecific antibody. No increased lysis was seen with 1D10 (-) cell lines. The bsab also mediated lysis of malignant B cells by autologous T cells. We conclude bsab containing an OKT3 arm and a 1D10 arm can induce T-cell-mediated lysis in a manner that is both potent and specific. This supports further evaluation of this bsab as a potential immunotherapy of B-cell malignancy.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


Blood ◽  
2010 ◽  
Vol 115 (17) ◽  
pp. 3508-3519 ◽  
Author(s):  
John C. Markley ◽  
Michel Sadelain

Abstract The γc-cytokines are critical regulators of immunity and possess both overlapping and distinctive functions. However, comparative studies of their pleiotropic effects on human T cell–mediated tumor rejection are lacking. In a xenogeneic adoptive transfer model, we have compared the therapeutic potency of CD19-specific human primary T cells that constitutively express interleukin-2 (IL-2), IL-7, IL-15, or IL-21. We demonstrate that each cytokine enhanced the eradication of systemic CD19+ B-cell malignancies in nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull mice with markedly different efficacies and through singularly distinct mechanisms. IL-7– and IL-21–transduced T cells were most efficacious in vivo, although their effector functions were not as enhanced as IL-2– and IL-15–transduced T cells. IL-7 best sustained in vitro T-cell accumulation in response to repeated antigenic stimulation, but did not promote long-term T-cell persistence in vivo. Both IL-15 and IL-21 overexpression supported long-term T-cell persistence in treated mice, however, the memory T cells found 100 days after adoptive transfer were phenotypically dissimilar, resembling central memory and effector memory T cells, respectively. These results support the use of γc-cytokines in cancer immunotherapy, and establish that there exists more than 1 human T-cell memory phenotype associated with long-term tumor immunity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


Sign in / Sign up

Export Citation Format

Share Document