Cells of the Osteoblast Lineage Confer Myeloma Cell Resistance to Established and Investigational Therapeutic Agents

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3995-3995
Author(s):  
Catriona A. Hayes ◽  
Paul Dowling ◽  
Richard W.J. Groen ◽  
Douglas W. McMillin ◽  
Jake E. Delmore ◽  
...  

Abstract Abstract 3995 Introduction: Multiple myeloma (MM) cells suppress osteoblast (OB) maturation and function and induce osteoclast-mediated bone resorption. However, immature cells of the osteoblast lineage (e.g. pre-osteoblasts) remain present in the MM bone microenvironment and their impact on MM cell response to treatment has not been fully characterized. We therefore studied human immortalized cells of the osteoblast lineage as surrogate models for in vitro studies on the effects of pre-osteoblasts on MM cell proliferation, survival and drug resistance. Methods: Immortalized hFOB 1.19 (here referred to as hFOB) and HOBIT cells were utilized in our studies, because, in the absence of Dexamethasone or vitamin D, they express markers consistent with pre-osteoblast stage of differentiation (high type I collagen levels; and low alkaline phosphatase, osteocalcin and osteopontin expression). Monolayer cultures of hFOB cells were performed to determine drug concentrations that did not exhibit cytotoxic effects on these pre-osteoblasts. Next, co-cultures of hFOB and HOBIT cells were performed using a panel of tumor cell lines from MM (n=13), breast (n=1) and lung (n=1) cancer. Compartment-specific bioluminescence imaging (CS-BLI) assays were undertaken to quantify the proliferative responses of the tumor cells in the presence of pre-osteoblasts, and if any changes are observed in tumor cell responses to established or novel therapeutic agents. Assays with Transwell insert chambers were conducted to allow for culture of tumor cells proximate to pre-osteoblasts, but preclude their direct cell-to-cell contact, in order to determine whether paracrine factors released by pre-osteoblasts are sufficient to recapitulate the effect(s) of their co-culture with tumor cells. Finally, cytokine or cytokine receptor neutralization studies with monoclonal antibodies or selective kinase inhibitors were performed to investigate the functional contribution of IL-6 or IGF1R-mediated signalling in tumor-pre-osteoblast interactions. Results: Pharmacologically relevant doses of conventional and novel therapies did not exhibit substantial cytotoxic effects on hFOB cells. Within 48hrs of co-culture, pre-osteoblasts stimulated proliferation of several tumor cell lines, including MM.1S, MM.1R, RPMI8226 and Dox40 in co-culture with hFOB; and NCI-H929, OPM2, H23 and Dox40 with HOBIT co-culture. hFOB cells decreased the sensitivity of 8 MM cell lines to at least one established (doxorubicin, dexamethasone, lenalidomide) or novel (vorinostat, pomalidomide) therapy tested. These observations were particularly pronounced in MM.1S and KMS34 cell lines. Subsequent Transwell-based co-culture assays showed that lack of direct cell-to-cell contact significantly decreases or even completely abrogates the resistance observed in respect to doxorubicin, lenalidomide or vorinostat in mono-cultures of tumor cells with pre-osteoblasts. Finally, IL-6 neutralization with monoclonal antibody did not overcome the proliferative effect of hFOB on MM cells. The anti-MM effect of IGF1R kinase inhibitors was also suppressed by co-culture with hFOB cells. These 2 latter results taken together indicate that the protection provided by hFOB cells is independent of IL-6 and IGF-1R-signaling in tumor or pre-osteoblasts. Conclusion: Our results suggest that cells of the osteoblast lineage may play a role as promoters of MM cell survival and resistance to diverse established and investigational therapeutics. Ongoing mechanistic and functional validation studies aim to delineate new therapeutic strategies to overcome pre-osteoblast-mediated drug resistance in MM and, potentially, other neoplasias. Disclosures: Richardson: Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Millenium Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Consultancy; Celgene: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol-Myers Squibb: Consultancy; Acetylon: Membership on an entity's Board of Directors or advisory committees; Oncopep: Membership on an entity's Board of Directors or advisory committees. Mitsiades:Millennium Pharmaceuticals: Honoraria; Celgene: Honoraria; Novartis Pharmaceuticals: Honoraria; Bristol-Myers Squibb: Honoraria; Merck &Co.: Honoraria; Centocor: Honoraria; Arno Therapeutics: Honoraria; Amgen: Research Funding; AVEO Pharma: Research Funding; OSI: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Johnson & Johnson: Research Funding; PharmaMar: Licensing royalties Other; Axios Biosciences: Uncompensated Role as advisor Other.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4393-4393 ◽  
Author(s):  
Rebecca Valentin ◽  
Marisa O. Peluso ◽  
Timothy Z. Lehmberg ◽  
Ammar Adam ◽  
Li Zhang ◽  
...  

Abstract Background CD47 is over-expressed by many tumor types and protects tumor cells from destruction via tumor-intrinsic and -extrinsic means. The fully human anti-CD47 monoclonal antibody (mAb) SRF231 has previously been shown to block the "don't eat me" CD47/signal regulatory protein alpha (SIRPα) interaction and induce macrophage-mediated phagocytic uptake of CD47-expressing tumor cells, either alone or in the presence of anti-CD20 mAb. Furthermore, SRF231 inhibited tumor growth in preclinical models of aggressive non-Hodgkin lymphoma (Holland P, et al. ASH 2016). Here, we explored the activity of SRF231 against CLL cells for the first time, both as monotherapy and in combination with rituximab or venetoclax (VEN). Methods Peripheral blood mononuclear cells from 24 CLL patients were evaluated for CD47 surface expression by flow cytometry. Primary CLL or Jurkat target cells were treated ex vivo with SRF231 or isotype control and evaluated in phagocytosis and cell death assays. Human monocyte-derived macrophages were cocultured with fluorescently-labeled target tumor cells and exposed to SRF231 and/or rituximab (commercial supply). BH3 profiling was performed by gently permeabilizing primary CLL cells and measuring the release of cytochrome C (Cyto-C) in response to BH3-only peptides by flow cytometry. Priming for apoptosis was measured by Cyto-C release in response to BIM BH3 peptide, and pro-survival protein dependencies were measured by response to specific BH3-only sensitizer peptides. Statistical analyses were by unpaired and paired t-test with a two-tailed nominal p ≤ 0.05 considered as significant. In vivo antitumor activity was assessed using tumor xenograft studies in CB17 SCID mice. Mice with established, subcutaneous Ri-1 tumors were randomized and treated with either isotype control, SRF231, VEN (Medkoo), or combination of SRF231 and VEN. Results CD47 was expressed in all primary CLL cells (n = 24, median mean fluorescence intensity [MFI] 7913, range 3575-18,329) with a slightly higher expression in unmutated CLL (U-CLL) vs mutated CLL (M-CLL) samples (U-CLL median MFI = 9106, n = 8 vs M-CLL, median MFI = 7713, n = 14, 2 unknown, p = 0.047). Primary CLL cells were significantly more susceptible to phagocytosis upon ex vivo treatment with SRF231 in combination with rituximab (median % increase in phagocytosis over isotype control of 32.28% in the combination vs 11.78% with rituximab alone, n = 24, p < 0.0001). Upon coculture of Jurkat cells with macrophages, SRF231 not only induced phagocytosis (EC50, 332 ± 65 ng/mL, n = 3), but also induced cell death of non-phagocytosed target tumor cells (EC50, 295 ± 43 ng/mL, n = 3). While soluble SRF231 did not induce significant target tumor cell killing, immobilized SRF231 induced Jurkat cell and primary CLL cell death (median % alive of 34.6% in SRF231 treated cells vs 64.4% in controls, n = 24, p < 0.0001). To assess the mechanism of cell death induction, tumor cells were pretreated with a pan-caspase inhibitor, Z-VAD-FMK, which revealed that SRF231-mediated tumor cell death is caspase-independent. In primary CLL cells, BH3 profiling confirmed that SRF231 did not alter mitochondrial priming for apoptosis or pro-survival Bcl-2 family protein dependencies. Pre-treatment with the phospholipase C (PLC) inhibitor U73122 prior to SRF231 exposure partially blocked the ability of SRF231 to kill CLL cells (median % alive of 45.4% in pre-treated cells vs 25.4% in controls, n = 6, p = 0.0029). In addition to these in vitro studies, SRF231 displayed profound antitumor activity in a xenograft model of B-cell lymphoma as a single agent, and led to complete and durable tumor regression in combination with VEN. Conclusion Ex vivo treatment of primary CLL cells with SRF231 led to dual antitumor effects of tumor cell-extrinsic plus -intrinsic mechanisms by augmenting rituximab-induced phagocytosis and inducing tumor cell death. SRF231 induced death of tumor cells through a caspase-independent mechanism that depends at least partially on PLC. In vivo, SRF231 in combination with VEN led to complete and durable tumor regression in a xenograft model. SRF231 is currently being evaluated across multiple tumor types in a Phase 1 clinical trial (NCT03512340). Disclosures Valentin: Roche: Other: Travel reimbursement; AbbVie: Other: Travel reimbursement. Peluso:Surface Oncology: Employment, Equity Ownership. Adam:Surface Oncology: Employment, Equity Ownership. Zhang:Surface Oncology: Employment, Equity Ownership. Armet:Surface Oncology: Employment, Equity Ownership. Guerriero:GSK: Research Funding; Eli Lilly: Research Funding. Lee:Surface Oncology: Employment, Equity Ownership. Palombella:Surface Oncology: Employment, Equity Ownership. Holland:Surface Oncology: Employment, Equity Ownership. Paterson:Surface Oncology: Employment, Equity Ownership. Davids:Surface Oncology: Research Funding; Celgene: Consultancy; Verastem: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; MEI Pharma: Consultancy, Research Funding; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Astra-Zeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Merck: Consultancy; TG Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3106-3106 ◽  
Author(s):  
Bart ECG De Goeij ◽  
Maarten L Janmaat ◽  
Grietje Andringa ◽  
Laurens Kil ◽  
Berris Van Kessel ◽  
...  

HexaBody-CD38 (GEN3014) is a novel, hexamerization-enhanced human IgG1 targeting CD38 with superior complement dependent cytotoxicity (CDC) activity, in addition to other effector mechanisms. HexaBody-CD38 carries the E430G mutation and binds a different epitope than the clinically validated CD38 monoclonal antibody daratumumab, which is currently being established as backbone therapy for the treatment of multiple myeloma. Introduction of the E430G mutationfacilitates the natural process of antibody hexamer formation through increased intermolecular Fc-Fc interactions after antigen binding at the cell surface (Diebolder et al., Science 2014; de Jong et al., PLoS Biol 2016). Improved IgG hexamer formation can increase binding of the hexavalent complement component C1q, thereby potentiating or unlocking antibody-mediated complement-dependent cytotoxicity (CDC). Preclinical data demonstrate highly potent CDC-mediated tumor cell kill in vitro in a panel of cell lines derived from hematological malignancies, including multiple myeloma (MM), B cell lymphoma and acute myeloid leukemia (AML). In these cell lines, at the highest dose tested (10 µg/mL), HexaBody-CD38 induced approximately 2-fold more CDC-mediated lysis compared to daratumumab. Of note, in those cell lines that were responsive to daratumumab in CDC assays (>50% tumor cell lysis), CDC activity of HexaBody-CD38 was superior to daratumumab, with IC50 values for HexaBody-CD38 2.4- to 13-fold lower than for daratumumab. Moreover, HexaBody-CD38 unlocked CDC activity in 17 out of 28 tumor cell lines that were not sensitive to daratumumab in CDC assays (<50% tumor cell lysis), including cell lines with lower expression of CD38 or higher expression of the complement inhibitory protein CD59. Importantly, in pilot experiments that are part of an ongoing larger study, HexaBody-CD38 was able to effectively kill MM cells from patients in CDC assays ex vivo, including in one patient that had relapsed from daratumumab (Figure 1). In addition to superior CDC, HexaBody-CD38 was shown to induce comparable antibody-dependent cell mediated cytotoxicity (ADCC) and antibody-dependent cell mediated phagocytosis (ADCP) as daratumumab. HexaBody-CD38 demonstrated more efficient inhibition of CD38 cyclase activity, which has been postulated to contribute to immune suppression in the tumor microenvironment. Importantly, in the presence of monocytes, HexaBody-CD38 treatment resulted in the removal of CD38 from the cell membrane of CD38 expressing cells, including T regulatory cells. This suggests downmodulation of CD38 as another potential mechanism to reduce CD38-generated metabolites and associated immune suppression. Finally, HexaBody-CD38 induced promising anti-tumor activity in vivo in PDX models of diffuse large B cell lymphoma in nude mice. Anti-tumor activity was associated with CD38 expression levels. In conclusion, HexaBody-CD38 is a novel CD38 antibody that shows superior capacity to induce CDC-mediated tumor cell kill compared to daratumumab, including in tumor samples from MM patients. Furthermore, HexaBody-CD38 induces FcγR-mediated effector functions and effectively inhibits CD38 enzymatic activity, either directly or indirectly by removal of CD38 from the cell membrane, thereby potentially contributing to immune activation. Targeting CD38 with HexaBody-CD38 could have therapeutic potential in daratumumab-naïve and -refractory MM patients, as well as in CD38-positive tumors in which daratumumab does not have single agent efficacy, such as DLBCL and AML. The promise of HexaBody-CD38 warrants further clinical investigation in CD38-positive hematological malignancies, including MM, B cell lymphoma and AML. Disclosures De Goeij: Genmab BV: Employment, Other: stock and/or warrants. Janmaat:Genmab BV: Employment, Other: stock and/or warrants. Andringa:Genmab BV: Employment, Other: stock and/or warrants. Kil:Genmab: Employment, Other: stock and/or warrants. Van Kessel:Genmab: Other: stock and/or warrants. Lingnau:Genmab: Employment, Other: stock and/or warrants. Freidig:Genmab BV: Employment, Other: stock and/or warrants. Mutis:Onkimmune: Research Funding; BMS: Research Funding; Janssen Pharmaceuticals: Research Funding; Celgene: Research Funding; Novartis: Research Funding; Amgen: Research Funding; Aduro: Research Funding. Sasser:Genmab: Employment, Other: stock and/or warrants. Breij:Genmab: Employment, Other: stock and/or warrants. Van De Donk:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; AMGEN: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Servier: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Ahmadi:Genmab Inc: Employment, Other: stock and/or warrants. Satijn:Genmab BV: Employment, Other: stock and/or warrants.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12
Author(s):  
Jennifer Kimberly Lue ◽  
John S Manavalan ◽  
Christine Klaus ◽  
Rahul Kanik ◽  
Andre M. Grilo ◽  
...  

Introduction: MYD88 mutations are found in 25% of DLBCL and are associated with an inferior survival. MYD88 is an adapter molecule, forming the core of the Myddosome complex. MYD88 mutations constitutively activate pathways such as NFқB, leading to lymphomagenesis. Essential to the Myddosome-dependent signaling pathway is the recruitment of IRAK4 which complexes with MYD88 to activate downstream effects. Targeting IRAK4 is therefore a rational therapeutic approach in MYD88-mutant lymphomas. First-in-class IRAKIMiDs, novel heterobifunctional degraders that target IRAK4 as well as the IMiD substrates Ikaros and Aiolos to enable the inhibition of both the NFkB and IRF4 pathways activated by MYD88 mutations, demonstrate potent efficacy in MYD88-mutant lymphomas (KTX-475, KTX-582, Walker D et al. AACR 2020). Herein, we compare the activity of IRAKIMiDs to IRAK4 kinase inhibitors and IMiDs alone in MYD88-mutant DLBCL, and evaluate rational combinations of IRAKIMiDs and other active agents in DLBCL for synergy. Methods: MYD88-mutant (n=4) and wild type (n=4) DLBCL cell lines were exposed to a panel of single agents (KTX-475, KTX-582, BAY1830839, CA-4948, CC-220, lenalidomide, pomalidomide, ibrutinib, umbralisib, venetoclax) in order to establish the drug concentration:cytotoxicity effect relationship. Cell viability was assessed using Celltiter-Glo assay at 24-hour intervals. IC50 values were computed. MYD88-mutant DLBCL cells were co-exposed to combinations of KTX-475 with venetoclax, ibrutinib, or umbralisib at concentrations representing their respective IC10-40 in order to determine synergy using the excess over bliss (EOB) method. Venetoclax, ibrutinib, and umbralisib were selected for combinational studies in order to target adverse pathways known to be associated in DLBCL biology. To confirm IRAK4 degradation, western blot and flow cytometry was performed. Apoptosis was evaluated with flow cytometry. Pre-treatment RNA-seq libraries were developed for the purpose of identifying GSEA and mutational analysis to predict response to IRAKIMiDs. Results: Exposure to IRAKIMiDs led to potent activity in MYD88-mutated DLBCL with IC50s in the low nanomolar range. IRAK4 degradation occured in a dose- and time-dependent manner and was observed as early as four hours after exposure. IRAKIMiDs induced superior cytotoxicity compared to two IRAK4 kinase inhibitors, including CA-4948 (Curis), which is currently under clinical investigation for relapsed/refractory NHL, as determined by lower IC50s in all cell lines. IRAKIMiD IC50s were also lower compared to pomalidomide, lenalidomide, and CC-220. KTX-475 was selected for synergy assessments based on IC50 values. Synergy was observed after exposure to KTX-475 in conjunction with venetoclax, ibrutinib, or umbralisib as determined by EOB &gt;0 in the MYD88-mutant OCI-LY10 model, with maximum values peaking at 72-96 hours. After dual drug exposure, IRAK4 degradation was validated by flow cytometry demonstrating that the addition of venetoclax, ibrutinib or umbralisib to KTX-475 did not impair IRAK4 degradation capabilities. RNA-seq interpretation is currently underway. Conclusions: Collectively, our results demonstrate that dual-function degraders targeting both IRAK4 and the IMiD substrates Ikaros and Aiolos can serve as a potential therapeutic option for poor prognosis MYD88-mutant DLBCL. Our data thus far demonstrate improved efficacy of IRAKIMiDs compared to IRAK4 kinase inhibitors or IMiDs alone in vitro, as well as synergy with other active agents in combination regimens. A promising lead IRAKIMiD candidate has been identified, with initiation of a first-in-human clinical trial in B-cell lymphomas planned for 2021. Disclosures Lue: Daiichi Sankyo: Honoraria; AstraZeneca: Speakers Bureau; Astex Pharmaceuticals: Honoraria; Kymera Therapeutics: Honoraria, Research Funding; Kura Oncology: Honoraria. Klaus:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Kanik:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. McDonald:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gollob:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Walker:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. O'Connor:Kymera Therapeutics: Current equity holder in private company, Honoraria, Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Current Employment, Current equity holder in publicly-traded company; Servier: Consultancy; Mundipharma: Other: Consulting; Astex Pharmaceuticals: Honoraria, Research Funding; Merck: Research Funding; Nomocan: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Other: Data Safety Monitoring Committee, Research Funding. Mainolfi:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1822-1822
Author(s):  
Cinzia Federico ◽  
Antonio Sacco ◽  
Katia Todoerti ◽  
Arianna Giacomini ◽  
Gaia C Ghedini ◽  
...  

The human fibroblast growth factor receptor (FGF-R) family plays an essential role in a wide range of cellular processes, such as cell growth, proliferation, differentiation, migration and survival. It has been reported that FGF-Rs are expressed in hematopoietic cells; and FGF/FGFR signaling deregulation is largely involved in hematologic malignancies, including Waldenström macroglobulinemia (WM). WM is still an incurable disease, and patients succumb due to disease progression. Therefore, novel therapeutics designed to specifically target deregulated signaling pathways in WM are required. We aimed to investigate the role of FGF/FGF-R system in FGF-dependent WM cell lines by using an anti-pan FGF trap molecule (NSC12), responsible for FGF/FGF-R blocking. We first interrogated the GSE9656 dataset in order to confirm the expression of FGFs and FGF-Rs in WM cells, demonstrating an enrichment of several FGF- and FGF-R-isoforms in primary WM patients' derived tumor cells compared to the normal cellular counterpart (P<0.05); and demonstrated the ability of NSC12 to inhibit FGF-secretion within the conditioned media of NCS12-treated WM cells, as shown by ELISA. Wide-transcriptome profiling of NSC12-treated WM cells (BCWM.1; MWCL1) revealed a significant inhibition of Myc-target related genes, coupled with silencing of genes involved in cell cycle progression, cell proliferation, PI3K-AKT-mTOR signaling, oxidative phosphorylation (Hallmark; FDR<0.25; P<0.05). This prompted us to evaluate the anti-tumor functional sequelae exerted by NSC12 in WM cells: NSC12 induced significant inhibition of WM cell growth (BCWM1 and WMCL1) in a dose-dependent fashion (0.1-10μM; IC50 ~3μM), even in the presence of bone marrow microenvironment. In addition, a significant effect was also observed in primary tumor cells from WM patients; while no effect was observed on healthy donor-derived peripheral blood mononuclear cells. The growth inhibitory effect was associated with induction of apoptotic cell death, caspase activation and PARP cleavage, as demonstrated by flow cytometry and western blot, respectively. Moreover, we also observed a NSC12 dose-dependent increase of mitochondrial reactive oxigen species (ROS), at protein level. Cell cycle analysis revealed a reduction of the S-phase and increase of G0/G1 phase. Mechanistically, NSC12 targeted WM cells by inhibiting MAPK, JAK/STAT3 and PI3K-Akt pathways known to be FGFRs-activated signaling cascades. Importantly, the same effect was maintained in WM cells even in the presence of the supporting BM microenvironment. Functional studies demonstrated the ability of NSC12 to impair the adhesion of both cell lines to the supportive primary bone marrow stromal cells, in vitro. NCS12-dependnet anti-WM activity was also tested in combination with bortezomib, carfilzomib, everolimus and ibrutinib: the combinatory treatment (48h) resulted in a more significant dose-dependent inhibition of WM cell survival and proliferation (P<0.05), thus suggesting the rational for combining FGF-blockade with proteasome-, mTOR-, or BTK-inhibitors. In vivo studies are being performed, in order to further corroborate the anti-WM activity of NSC12 using WM animal models. Disclosures Ronca: Associazione Italiana per la Ricerca sul Canctro (AIRC): Research Funding. Rossi:Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Mundipharma: Honoraria; BMS: Honoraria; Sandoz: Honoraria; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy; Roche: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Roccaro:AstraZeneca: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; European Hematology Association: Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; European Hematology Association: Research Funding; Transcan2-ERANET: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1367-1367
Author(s):  
Ryosuke Shirasaki ◽  
Sara Gandolfi ◽  
Ricardo De Matos Simoes ◽  
Geoffrey Matthews ◽  
Dennis Buckley ◽  
...  

Abstract Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases (e.g. CRBN and VHL) to induce neopmorphic ubiquitination and proteasomal degradation of target oncoproteins, with potent preclinical activity against diverse neoplasias. Despite intense recent efforts to develop pharmacological "degraders" against many different oncoproteins, the mechanisms regulating tumor cell sensitivity to different classes of these "degraders" remain incompletely understood. To address this question in an unbiased manner, we performed genome-scale CRISPR/Cas9-based gene editing loss-of-function (LOF) studies in MM.1S multiple myeloma (MM) cells treated with CRBN-mediated degraders of BET bromodomain proteins (dBET6) or CDK9 (Thal-SNS-032); or with VHL-mediated degraders of BET bromodomain proteins (ARV-771 or MZ-1). We observed that MM cell resistance to any of these "degraders" does not involve genes with recurrent LOF in MM patients and association with high-risk MM (e.g. for TP53, PTEN, negative regulators of cell cycle, et.c.), suggesting that these degraders may exhibit activity against tumor cells with prognostically adverse genetic features. In tumor cells resistant to the CRBN-mediated degraders dBET6 and Thal-SNS-032, we observed significant enrichment of sgRNAs targeting CRBN itself or (to a lesser extent) other components or regulators of its cullin RING ligase (CRLCUL4A) complex, including members of the COP9 signalosome (COPS7A, COPS7B, COPS2, COPS3, COPS8, GPS1, etc.), DDB1, or the E2 ubiquitin conjugating enzyme UBE2G1. In tumor cells resistant to the VHL-mediated degraders MZ-1 and ARV-771, we observed pronounced enrichment of sgRNAs for CUL2, VHL itself, other members (e.g. RBX1, elongin B/C [TCEB1, TCEB2] of the CUL2 complex with VHL), as well as COP9 signalosome genes (COPS7B, COPS8) and UBE2R2. We also validated, using individual sgRNAs for several of these candidate genes that their CRISPR knockout can decrease tumor cell response to dBET6 and Thal-SNS-032 treatment (e.g. for CRBN, COPS7B, COPS2, or COPS8) or MZ-1 and ARV-771 (e.g. for VHL, COP7B and COPS8). Notably, the sgRNAs against COP9 signalosome genes conferred less pronounced decrease in sensitivity to VHL-, than CRBN-based, degraders, suggesting that COP9 signalosome loss has differential roles in the function of CUL4ACRBN vs. CUL2VHL and potentially other CRL complexes. Tumor cells isolated from our CRISPR knockout screens with confirmed resistance to a given degrader were then treated with other degraders operating through the same or different E3 ligase; and against the same or different oncoprotein: we observed cross-resistance between degraders operating through the same E3 ligase against different oncoproteins, but not for degraders targeting the same protein via different E3 ligase/CRLs: this result is consistent with our observation for substantial gene-level differences (despite pathway-level similarities) for resistance mechanisms for CRBN- vs. VHL-based degraders. In conclusion, our study systematically defined at genome-scale the resistance mechanisms of tumor cells against degraders which leverage the same E3 ligase against different targets; or target the same oncoprotein through different E3 ligases/CRL complexes. We observed that for multiple types of degraders, tumor cell resistance is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein. The observed pathway-level similarities and major individual gene-level differences in resistance mechanisms for CRBN- and VHL-mediated degraders likely reflects the different composition and regulation of the respective CRL complexes mediating the action of these classes of degraders Our observations suggest that preventing or delaying resistance to pharmacological degradation of oncoproteins may require concurrent or sequential/alternating use of degraders operating through different E3 ligases and ideally, different CRL complexes; while synthetic lethal strategies to prevent COP9 signalosome LOF may also be contemplated to counteract a common, but quantitatively less pronounced, potential mechanism of resistance for several different classes of degraders. Collectively, our study highlights important new directions in the development of new pharmacological degraders for blood cancers and other neoplasias. Disclosures Richardson: Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Licht:Celgene: Research Funding. Boise:Abbvie: Consultancy; AstraZeneca: Honoraria. Gray:C4 Therapeutics: Consultancy. Mitsiades:TEVA: Research Funding; Janssen/ Johnson & Johnson: Research Funding; EMD Serono: Research Funding; Takeda: Other: employment of a relative; Abbvie: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4066-4066
Author(s):  
Hilma J Van Der Horst ◽  
A. Vera de Jonge ◽  
Ida H Hiemstra ◽  
Anne T Gelderloos ◽  
Daniella RAI Berry ◽  
...  

DuoBody-CD3xCD20 (GEN3013) is a novel clinical-stage CD3 bispecific antibody (bsAb) targeting CD20-positive tumor cells. GEN3013 was previously shown to induce potent T cell-mediated cytotoxicity towards B cell Non-Hodgkin lymphoma (B-NHL) cell lines in vitro and in vivo. Here, we investigated the cytotoxic activity of GEN3013 in tumor cells obtained from lymph node (LN) biopsies of B-NHL patients, who were newly diagnosed (ND) or relapsed from/refractory to (RR) treatment regimens containing CD20 monoclonal antibodies. Moreover, we explored whether specific tumor microenvironment characteristics could be associated with sensitivity to GEN3013. To test the intrinsic susceptibility of B-NHL cells to GEN3013, independent of interpatient variation in tumor T cell frequency or activation status, single cell suspensions obtained from LN of B-NHL patients were incubated with GEN3013 in the presence of allogeneic PBMC from a single donor, at an effector to target (E:T) ratio 10:1. GEN3013 (30 ng/mL) induced median tumor cell lysis of 64% in Diffuse Large B Cell Lymphoma (DLBCL, n=14), 69% in Follicular Lymphoma (FL, n=14) and 84% in Mantle Cell Lymphoma (MCL, n=8) samples, with EC50 values ranging from 0.01-3.9 ng/ml. Importantly, cytotoxic activity of GEN3013 was comparable in ND (n=24) and RR (n=12) patients (Figure 1). In these assays considerable heterogeneity in T cell activation, as assessed by expression of CD25, CD69 and granzyme B release, was observed. Furthermore, high expression of T cell activation markers was not always associated with high levels of GEN3013 cytotoxic activity, suggesting tumor-intrinsic resistance mechanisms. In parallel, in all B-NHL samples GEN3013-mediated cytotoxicity was assessed without the addition of allogeneic PBMCs, thus purely relying on T cells present in the LN biopsy. In this setting, median tumor cell lysis was lower; 18% in DLBCL (range 0-46%), 17% in FL (range 0-46%) and 0% in MCL (range 0-11%), but strongly correlated with the number of T cells present in the single cell suspensions. Analysis of the tumor microenvironment by 7 color immunohistopathology of matched FFPE-embedded tumor biopsies (n=24), confirmed that the T cell frequency in the tumor biopsies was the major determinant of GEN3013 cytotoxic activity in DLBCL, FL and MCL. Moreover, experiments using (MACS) purified T cells from 4 DLBCL and 5 FL LN biopsies demonstrated that the intrinsic capacity of tumor LN T cells to induce GEN3013 mediated cytotoxicity was comparable to healthy donor T cells. Detailed tumor microenvironment analysis based on 7 color immunohistopathology staining, including relative frequency and spatial distribution of CD4 and CD8 T cells and macrophages, as well as the T cell activation status, in relation to sensitivity to GEN3013 mediated tumor cell lysis is ongoing and results will be presented. In conclusion, GEN3013 induced potent cytotoxicity in tumor cells of DLBCL, FL and MCL patients ex vivo, irrespective of prior treatment with CD20 monoclonal antibodies. Autologous T-cells at the tumor site were able to mediate GEN3013-induced cytotoxicity, and cytotoxic activity was enhanced in presence of PBMCs suggesting that optimal tumor cell kill by GEN3013 is dependent on T-cells in the tumor microenvironment. The cytotoxic capacity of B-NHL patient T cells within the tumor microenvironment was comparable to healthy donor peripheral blood T cells, emphasizing the therapeutic potential of CD3 bsAb in B-NHL. A First-in-Human trial to assess the safety and preliminary efficacy of GEN3013 in B-NHL patients is currently ongoing (NCT03625037). Figure 1 Cytotoxic activity induced by GEN3013 compared to CD3xcontrol bsAb (both 30ng/ml) towards tumor cells obtained from lymph node (LN) biopsies of newly diagnosed (ND) versus relapse or refractory (RR) DLBCL, FL and MCL patients. GEN3013 achieved comparable lysis in ND versus RR patients (Mann-Whitney U test; not significant). Error bars represent median ± interquartile range. Figure 1 Disclosures Van Der Horst: Genmab: Other: Financial Support. Hiemstra:Genmab: Employment, Equity Ownership, Other: Warrants. de Jong:Genmab: Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Chamuleau:Genmab: Research Funding. Zweegman:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding. Breij:Genmab: Employment, Other: Warrants. Roemer:Genmab: Research Funding. Mutis:Celgene: Research Funding; Janssen Research and Development: Research Funding; Onkimmune: Research Funding; Genmab: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1574-1574
Author(s):  
Efstathios Kastritis ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Steffen Klippel ◽  
Douglas W. McMillin ◽  
...  

Abstract Abstract 1574 Cancer cells with stem cell-like features are a topic of intense research because their resistance to existing drugs is considered a culprit for relapses, even in patients with complete remission defined by clinical, biochemical and imaging parameters or by sensitive molecular techniques. Salinomycin, an antibacterial and coccidiodostatic ionophore, is reported (Cell 2009;138(4):645-59) to be >100-fold more potent against breast cancer cells with stem cell-like phenotype after mesenchymal transdifferentiation due to stable transfection with shRNA against CDH1 than against the parental cells. We evaluated whether salinomycin could also exhibit a similar activity against stem cell-like cells in multiple myeloma (MM). To establish a comparative reference for such potential activity, we first tested salinomycin (0-10 uM for up to 72hrs) against a panel of 15 MM cell lines and observed IC50 values <1 uM in 10/15 cell lines tested, including >80% reduction of tumor cell viability in 6/15 cell lines tested at 0.5 uM, i.e. levels lower than the IC50 values for in vitro activity of salinomycin against breast cancer cells with (HMLE-shCDH1, IC50 ∼1 uM) or without (HMLE-shControl, IC50 >>10 uM) stem cell-like features. CD138+ purified primary tumor cells from 3 MM patients responded to salinomycin with IC50 values (105, 332 and 750 nM, respectively) in the same range as MM cell lines. In vitro combinations with bortezomib, doxorubicin, melphalan, and dexamethasone showed overall no antagonism, while evidence of additive or even synergistic effect could be identified in certain dose ranges. Because MM cell lines and primary tumor cells responded concordantly to salinomycin and with higher sensitivity than breast cancer stem cell-like cells, we hypothesized that MM cells may in general be more responsive to salinomycin than other tumors. Since tumor-stromal interactions can increase the expression of transcriptional signatures of “stemness” in MM cells, we embarked on characterizing the anti-MM properties of salinomycin using compartment-specific bioluminescence imaging (CSBLI) assays. These showed that co-culture with stromal cells did not confer resistance to salinomycin in 5 MM cell lines (MM.1S, OCI-My5, KMS-11, KMS-18, NCI-H929) and in fact enhanced its activity against 4 of them. Side population (SP) cells, defined by their ability to efflux Hoechst stain, represent a stem cell-like population which was identified in MM cell lines and could represent the functional equivalent of the mesenchymally transdifferentiated breast cancer stem cell-like cells. We observed that salinomycin reduces the SP fraction of MM cell lines at doses >20 times lower than those required for in vitro effect against the bulk <<main population>> of the respective cell lines. Interestingly, the anti-SP effect of salinomycin was more pronounced in the presence of stroma, similarly to the CSBLI studies on the entire MM cell population and consistent with our prior observation that tumor-stroma interaction enhances transcriptional signatures of ≪stemness≫ in the tumor compartment. However, when we tested the in vivo anti-MM activity of salinomycin in an orthotopic model of i.v. injected Luc+ MM cells, no anti-MM activity (in terms of tumor burden decrease or overall survival prolongation) was observed at the maximum tolerated dose (1 mg/kg i.p. daily, which is consistent with most studies reported thus far in the literature). Ex vivo treatment of KMS-11 cells with salinomycin doses (100 nM for 72 hrs) selectively targeting SP cells was followed by s.c. injection of these cells or vehicle-treated controls in sublethallly irradiated SCID/NOD mice, but no statistically significant improvement in tumor burden or overall survival was observed. Our in vitro results indicate that salinomycin exhibits intriguing in vitro anti-MM activity, not only against SP cells but also against the bulk ≪main≫ MM cell population, even in the presence of stromal support. In contrast, the in vivo activity of salinomycin is compromised by side effects in the orthotopic model of MM lesions, while short term ex vivo exposure of tumor cells is conceivably insufficient to eradicate clonogenic cells and lead to appreciable delay in tumor growth in vivo. Our studies point to intriguing features as well as notable challenges that have to overcome before salinomycin or other more selective agents of this class can be safely tested in clinical trials in MM. Disclosures: McMillin: Axios Biosciences: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Mitsiades:Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 952-952 ◽  
Author(s):  
Shannon M Matulis ◽  
Vikas A. Gupta ◽  
Izabelle Brown ◽  
Jonathan J Keats ◽  
Paul Secrist ◽  
...  

Abstract We and others have previously demonstrated that MM is often dependent on MCL1 or co-dependent on MCL1 and BCLXL or BCL2 for survival. Therefore, drug development targeting MCL1 has been a top priority. Here we report on AZD5991, a specific small molecule inhibitor of MCL1. We treated 17 MM cell lines with increasing concentrations of AZD5991 for 24 h and measured Annexin V staining to determine the IC50s. Nine of the cell lines tested were highly sensitive to AZD5991 with IC50 values below 100 nM, 6 lines exhibited an intermediate sensitivity (IC50 100-1000 nM), and only 2 cell lines tested were resistant (IC50 >1000 nM). Six of the highly sensitive lines are t(11;14) and sensitive to venetoclax suggesting co-dependence on BCL2 and MCL1 for survival. We also determined the effect of the bone marrow microenvironment on the response of MM cell lines to AZD5991. We reported that IL-6 protects MM cell lines and patient samples from apoptosis by making the cells more MCL1 dependent. Based on this, we predicted IL-6 would have little to no effect on AZD5991-induced cell death. We treated 12 cell lines with AZD5991 in the presence of 1 ng/mL IL-6 or 10% Hs5 conditioned medium (CM) for 24 h and found that only 3/12 and 2/12 lines were protected from apoptosis in the presence of IL-6 and CM, respectively. Interestingly, when co-cultured with the stromal cell line Hs5, 7/11 lines tested were protected from AZD5991-induced cell death, suggesting cell-cell contact is influencing the response. This is in contrast to ABT-737 and venetoclax where cell-cell contact provided no additional protection than CM. Mechanistically apoptosis induced via MCL1 inhibition is not dependent on BIM expression as is the case with BCLXL and BCL2 inhibition. KMS26 and LP1 MM cell lines contain a bi-allelic deletion of BIM and we have reported their resistance to ABT-737. However, both cell lines respond to AZD5991 with IC50 values in an intermediate sensitivity range. Co-immunoprecipitation (CoIP) studies were employed to determine the protein bound to MCL1 that could be promoting apoptosis upon release. We found NOXA and BAK bound in KMS26 and LP1 and both were released from MCL1 in response to AZD5991. Additionally, CoIPs performed on cell lines expressing BIM showed NOXA, BIM, and BAK bound to MCL1 and released following treatment. To further investigate we used CRISPR-cas9 to generate MM cell lines lacking expression of NOXA, BAK, BAX, or BIM. In KMS26 and LP1, deletion of NOXA and BAX had little effect on AZD5991-induced cell death while the BAK deletion significantly inhibited apoptosis in both cell lines. Similar results were observed in the BIM expressing cell line OCI-My5, with no protection from AZD5991-induced apoptosis in the NOXA and BAX edited lines, significant protection in the BAK-deleted line, and an intermediate degree of protection in the BIM knockout line. In KMS18, BIM deficiency had a minimal effect on apoptosis following MCL1 inhibition, however both BAX and BAK were required for AZD-induced cell death. Additionally, we have tested 41 samples from 37 patients for sensitivity to AZD5991. Samples were treated with increasing concentrations to determine IC50 values in the same manner as the MM cell lines. The samples segregated into 4 groups based on IC50. The most sensitive group (N=3) had an IC50 below 10 nM. The largest group had an IC50 range of 50-114 nM (N=26). The last two cohorts were more resistant with a range of 500-916 nM (N=10) and 2 samples with an IC50 over 1300 nM. Since MCL1 is on 1q21, a frequently amplified region in MM, we determined if 1q21 gain was associated with sensitivity. For the 35 samples where FISH data were available, 18 had 1q21 gains by FISH while 17 were negative. There is a trend for the 1q21 gain cohort to be more sensitive (P=0.0573), with only 2/18 having an IC50 above 109 nM. In contrast for the 1q21 negative 7/17 were in the resistant groups. Thus 1q21 may be a marker of sensitivity to MCL1 inhibitors. The data reported here demonstrate that AZD5991 is effective at inducing apoptosis in MM and can overcome soluble microenvironment resistance factors that influence the response to venetoclax. This appears to be due to differential requirements for pro-apoptotic factors for BCL2 and MCL1 inhibition and suggests an underappreciated complexity in the role of BCL2 and MCL1 in cell survival. Finally these findings also suggest that 1q21 gain may be a marker for AZD5991 sensitivity. A clinical trial is currently ongoing in myeloma. Disclosures Secrist: AstraZeneca: Employment. Cidado:AstraZeneca: Employment, Equity Ownership. Tron:AstraZeneca: Employment. Neri:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Bahlis:Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Kaufman:Roche: Consultancy; Abbvie: Consultancy; Karyopharm: Other: data monitoring committee; Janssen: Consultancy; BMS: Consultancy. Heffner:Pharmacyclics: Research Funding; Genentech: Research Funding; ADC Therapeutics: Research Funding; Kite Pharma: Research Funding. Lonial:Amgen: Research Funding. Nooka:Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive technologies: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2469-2469
Author(s):  
Ana Acuña-Villaorduña ◽  
Douglas W. McMillin ◽  
Constantine S. Mitsiades

Abstract Abstract 2469 Introduction: Kinases are integral components of diverse signaling cascades which can mediate microenvironment-derived resistance of tumor cells to apoptosis. We thus hypothesized that tumor cell-microenvironment interactions alter the anti-tumor activity of multi-targeted kinase inhibitors and could contibute to discordant efficacy results in conventional preclinical models which do not account for these interactions vs. in clinical studies. Methods: We evaluated 6 multi-targeted kinase inhibitors initially developed to target IGF1R (XL-228), Akt/p70S6K (EXEL-6075), B-/C-RAF(EXEL-0094), CHK1/2 (XL844), met/VEGFR2(EXEL-6323) and JAK2 (XL019). Compounds were tested (0–20 μM, 48 hrs) against luciferase-expressing human multiple myeloma (MM) (n=8), mantle cell lymphoma (n=2) and breast cancer (n=1) cell lines. For each of these treatments, tumor cells were cultured in isolation or co-cultured with immortalized human bone marrow stromal cells (BMSCs, n=2); lung fibroblasts; hepatocytes; or brain astrocytes. Tumor cell viability was quantified by tumor cell compartment-specific bioluminescence imaging (CS-BLI). For each compound and tumor cell line, the area under the dose-response curve (AUC) was calculated as % of the AUC that corresponds to 100% tumor cell viability at all doses, to provide cumulative measure of drug activity across the range of tested drug concentrations. Differences in % AUCs in presence vs. absence of accessory cells were compared by 2-tailed paired t-test. The average value and skewness of distribution for log(10)IC50 of enzymatic activity for each kinase and inhibitor tested were calculated for quantitative comparison of multi-targeted nature of these compounds. Results: Co-culture of most tumor cell lines with accessory cells triggered resistance for 5 of 6 compounds tested, as evidenced by statistically significant (p<0.001 for all tests) increases in %AUC with vs. without co-culture with accessory cells (average %AUC differences of 4.7%, 23.4%, 6.2%, 9.7% and 10.8% for IGF1R, Akt/p70S6K, B-/C-RAF, CHK1/2; and met/VEGFR2 inhibitors, respectively, with corresponding 95% C.I. of 2.0–7.5%, 18.2–28.6%, 2.0–10.4%, 5.3–14.1%, and 3.9–17.6%). In contrast, co-culture with accessory cells increased the response of most tumor cell lines to JAK2 inhibitor (average AUC decrease of 13.8%, 95%CI 1.9–16.4, p<0.001). Results were consistent and statistically significant when analysis was restricted to MM cell lines only. For some inhibitors, heterogeneous responses of different tumor cells to accessory cells were noted. For example, for met/VEGFR2 and CHK1/2 inhibitors, 58.0% (40/69) and 60.0% (36/60) of experimental conditions, respectively, showed co-culture-induced resistance, while 31.9% (22/69) and 18.0% (11/60) of cocultures, respectively, showed sensitization to these inhibitors. High frequency of sensitization was observed in co-cultures of a bortezomib/Dex-resistant subline of MM1S cells treated with met/VEGFR2 inhibitor (63.6%, 7/11 of co-cultures tested), and in co-cultures with BMSCs treated with CHK1/2 inhibitor (29.6% of co-cultures tested). The degree of sensitization or resistance by accessory cells (%AUC difference with vs. without co-culture) did not correlate with quantitative measures of multi-targeted nature for each inhibitor. Conclusions: Accessory cells from different tissues significantly modulated tumor cell responses to diverse multi-targeted kinase inhibitors. Co-cultures enhanced the anti-tumor activity of JAK2 inhibitor, but decreased the activity of the other compounds tested. These different responses did not correlate with how multitargeted each inhibitor was. The sensitization to the JAK inhibitor may specifically reflect increased dependency on JAK signaling for tumor cells when they interact with accessory cells. Accessory cell-induced resistance to some kinase inhibitors (e.g. IGF1R, Akt, CHK1–2) may account for observed differences in their preclinical vs. clinical efficacy. These results provide a rationale for preclinical testing of compounds against large panels of tumor cell lines and clinically-relevant accessory cell types to help develop therapeutics against tumors localized in specific tissue microenvironmental niches. Disclosures: McMillin: Axios Biosciences: Equity Ownership. Mitsiades:Millennium Pharmaceuticals: Honoraria; Celgene: Honoraria; Novartis Pharmaceuticals: Honoraria; Bristol-Myers Squibb: Honoraria; Merck &Co.: Honoraria; Centocor: Honoraria; Arno Therapeutics: Honoraria; Amgen: Research Funding; AVEO Pharma: Research Funding; OSI: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Johnson & Johnson: Research Funding; PharmaMar: Licensing royalties Other; Axios Biosciences: Uncompensated Role as advisor, Uncompensated Role as advisor Other.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2408-2408
Author(s):  
William T. Johnson ◽  
Colleen Isabelle ◽  
Ashley N Vogel ◽  
Jonathan E Brammer ◽  
Amy E Boles ◽  
...  

Abstract Introduction: Mature T-cell neoplasms (MTCN) are a heterogeneous and aggressive group of lymphoid neoplasms with very limited options for precision immunotherapy. Targeted immunotherapy with antibodies directed against surface markers on tumor cells has emerged as an effective treatment for B-cell neoplasms, but the development of immunotherapy strategies for MTCN has been much slower. CD38 is expressed at low levels in a subset of normal resting T-cells. Data on the frequency and level of CD38 expression is MTCN are lacking. Our goal was to study the expression and stability of CD38 on a spectrum of neoplastic T-cell populations and assess the potential anti-tumor effect of anti-CD38 monoclonal antibodies in combination with allogeneic natural killer (NK) cells in MTCN. Methods and results: We searched the Thomas Jefferson University Hospital (TJUH) pathology records for all cases of MTCN for which immune-phenotypical characterization of the neoplastic T-cell population by multi-color flow cytometry (FC) was available. CD38 expression was evaluated in cases where an abnormal T-cell population (defined as loss of one on more pan T-cell markers and/or a skewed CD4 to CD8 ratio). A total of 103 unique patients with MTCN were identified. Of these, 51 had at least one biopsy whereby tumor cells had an abnormal immunophenotype which could then be assessed for CD38 expression. CD38 was expressed to some extent in all but 2 cases with expression levels on peripheral T-cell lymphoma-not other specified (PTCL-NOS)(% Mean±SEM = 80.84±10.26, N=11), angioimmunoblastic T-cell lymphoma (AITL) (% Mean±SEM = 80.56±7.34, N=6), nodal PTCL with T follicular-helper (T FH) phenotype (% Mean±SEM = 55.00±12.72, N=7), anaplastic large cell lymphoma (ALCL) (% Mean±SEM = 77.38±10.75, N=3), large granular lymphocytic leukemia (LGLL) (% Mean±SEM = 80.27±7.49, N=4), T-cell prolymphocytic leukemia (T-PLL) (% Mean±SEM = 88.26±4.20, N=7), cutaneous T-cell lymphoma (CTCL) (% Mean±SEM = 49.52±14.77, N=7), adult T-cell leukemia/lymphoma (ATLL) (% Mean±SEM = 76.68±10.45, N=3), hepatosplenic T-cell lymphoma/monomorphic epitheliotropic intestinal T-cell lymphoma (HSTCL/MEITL) (% Mean±SEM = 75.00±11.37, N=3). The medians and ranges of the MFI of CD38 on CD38+ tumor cells were the following: PTCL-NOS 29.46 (3.1-115.62), AITL 13.64 (2.67-29.41), other PTCL-T FH 5.87 (0-48.67), ALCL 11.13 (3.6-11.28), LGL (13.52 (9.72-18.25), T-PLL 6.49 (3.09-18), CTCL 8.36 (0-116.75), ATLL 27.17 (3.54-60.5), HSTCL/MEITL 15.96 (6.96-167.85). We also measured surface expression of CD38 on the patient-derived MTCN cell lines HuT-78, HuT-102, Jurkat, H9, HH, and MOTN1, all of which expressed CD38, to determine which of these cell lines could be used for in vitro experiments. We next evaluated if the CD38 molecule is an effective target for antibody-mediated therapy in MTCN, by testing the ability of daratumumab (dara) to enhance antibody-dependent cellular cytotoxicity (ADCC) elicited by NK cells. For this, we purified normal NK-cells from TJUH Blood Bank leukoreduction filters and cultured with recombinant IL-15 for 48 hours prior to all experiment. T-cell lines and primary MTCN cells were treated with increasing concentrations (0.1 µg/mL - 2 µg/mL) of dara or isotype control. NK-cells were added at Effector:Target ratio of 5:1 and incubated for 4 hours at 37⁰ Celsius. Cytotoxicity was measured by LDH release assay. Dara induced significant cell lysis starting at doses as low as 0.1μg/mL in both T-cell lines and primary MTCN cells, reaching maximum cytotoxicity at 0.5-2μg/mL (mean±SEM cytotoxicity in isotype vs dara treated cells= 50.0±5.05% vs 97.5±2.5%, N=4, p-value=0.0002). The degree of ADCC induction also correlated with interferon-gamma (IFN-g) release by NK cells in vitro for both T-cell lines and primary MTCN cells. Conclusions: The majority of MTCN analyzed (N=49, 96%) showed any degree of CD38 expression by FC with a wide variation of intensity, including within the same subtype. Allogeneic NK cells efficiently elicited dara-mediated ADCC of tumor cells from all MTCN subtypes and produced abundant IFN-g. These data highlight the potential of targeting CD38 in MTCN with anti-CD38 antibodies and allogeneic NK cells. The strong CD38 expression observed in most tumor cells from ultra-rare and very aggressive subtypes of MTCL opens the door to much needed new treatment strategies. Disclosures Brammer: Celgene: Research Funding; Kymera Therapeutics: Consultancy; Seattle Genetics: Speakers Bureau. Chakravarti: Kiadis Pharma: Patents & Royalties. Porcu: Viracta: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Innate Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Daiichi: Honoraria, Research Funding; Kiowa: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Spectrum: Consultancy; DrenBio: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document