Links Between Defective DNA Strand Break Repair and Genome Instability in Fanconi Anemia

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-2-SCI-2
Author(s):  
Stephen C. West

Abstract Abstract SCI-2 All living organisms feature DNA repair pathways that safeguard the integrity of the genome, and mutations in proteins that mediate key events in DNA repair have been linked to genome instability and tumorigenesis. Homologous recombination provides an important DNA repair pathway that is needed for the restoration and restart of broken replication forks, for the rejoining of chromosome/chromatid breaks, and for the processing of DNA cross-links. Mutations in genes that encode a variety of recombination proteins are linked to breast cancers and to heritable diseases such as Bloom syndrome (BS) and Fanconi anemia (FA). In recent work, we purified the BLM protein (defective in BS), the BRCA2 (FANCND1) and PALB2 (FANCN) tumor suppressors (mutated in some cases of FA), and the newly discovered FANCP protein, also known as SLX4, and have initiated structure-function analyses to elucidate their molecular functions. How these proteins process DNA, and how they are regulated and controlled to direct the outcome of recombinational repair is now revealing unexpected insights that extend our understanding of efficient DNA repair and tumor avoidance. Disclosures: No relevant conflicts of interest to declare.

Mutagenesis ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 107-118
Author(s):  
Bakhyt T Matkarimov ◽  
Dmitry O Zharkov ◽  
Murat K Saparbaev

Abstract Genotoxic stress generates single- and double-strand DNA breaks either through direct damage by reactive oxygen species or as intermediates of DNA repair. Failure to detect and repair DNA strand breaks leads to deleterious consequences such as chromosomal aberrations, genomic instability and cell death. DNA strand breaks disrupt the superhelical state of cellular DNA, which further disturbs the chromatin architecture and gene activity regulation. Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyse the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are regarded as DNA damage sensors that, upon activation by strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. Noteworthy, the regularly branched structure of poly(ADP-ribose) polymer suggests that the mechanism of its synthesis may involve circular movement of PARP1 around the DNA helix, with a branching point in PAR corresponding to one complete 360° turn. We propose that PARP1 stays bound to a DNA strand break end, but rotates around the helix displaced by the growing poly(ADP-ribose) chain, and that this rotation could introduce positive supercoils into damaged chromosomal DNA. This topology modulation would enable nucleosome displacement and chromatin decondensation around the lesion site, facilitating the access of DNA repair proteins or transcription factors. PARP1-mediated DNA supercoiling can be transmitted over long distances, resulting in changes in the high-order chromatin structures. The available structures of PARP1 are consistent with the strand break-induced PAR synthesis as a driving force for PARP1 rotation around the DNA axis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-7-SCI-7
Author(s):  
Richard A. Gatti

Abstract Abstract SCI-7 Ataxia-telangiectasia (A-T) is the prototype for an expanded group of inherited radiation sensitive disorders that together define the XCIND syndrome: x-ray hypersensitivity, cancer, immunodeficiency, neurological dysfunction, and DNA repair deficiency. Although the clinical radiosensitivity of these disorders can be tested in the clinical laboratory, diagnostic methods remain limited and in need of further validation. Without exception, to date, sensitivity to ionizing radiation appears to be integrally associated with double strand break (DSB) repair defects and lymphoid cancer susceptibility, setting these disorders apart from single strand break repair disorders such as xeroderma pigmentosum. Responding within seconds to DSB damage are ATM kinase, the protein lacking in A-T, and the NMR complex (nibrin, Mre11, and Rad50). The latter three proteins are associated with three additional XCIND disorders (nibrin deficiency [aka nijmegen breakage syndrome], Mre11 deficiency [ATLD], and Rad50 deficiency). ATM kinase activates a myriad of other proteins that 1) halt DNA synthesis, replication, and the progression of the cell cycle; 2) form a complex protein “mesh” to physically stabilize the broken DNA strands; and 3) restore the integrity of the breaks before they unravel to create even larger chromosomal lesions and resulting malignancies. Another ATM-dependent cancer link involves the downregulation of ATM by microRNA-421. MicroRNA-421 is upregulated by the transcription factor N-myc. Despite this, neuroblastomas are not commonly observed in A-T or XCIND patients. Another subset of XCIND-associated disorders lacks proteins the drive the nonhomologous end joining pathway of DNA repair. Several of these diseases present in infancy as B−/T− severe combined immunodeficiency, or SCID, and are frequent candidates for stem cell transplantation. Attempts to ablate existing bone marrow prior to transplantation may further compromise such patients if they are inherently radiosensitive. Thus, attempts to preselect such patients and reduce radiation dosages may improve general post-transplantation survival. While most protein deficiencies can be diagnosed by immunoblots of appropriate cellular fractions, nonfunctional proteins are not detected by this platform. Colony survival assays (CSA) measure the ability of replicating cells (e.g., lymphoblasts or fibroblasts) to survive after exposure to radiation. Although causal proof that CSA can predict clinical radiosensitivity is lacking, the reduced percent survival fraction (i.e., radiosensitivity) of A-T, N-Bromosuccinimide, or Fanconi cell lines can be abrogated by introducing the mutated cognate gene. Other surrogate assays for radiosensitivity include kinetic studies, pre-irradiation and post-irradiation of γ-H2AX or SMC1 phosphorylation. Ultimately, DNA sequencing of a candidate gene can pinpoint the underlying pathogenesis of radiosensitivity in an XCIND disorder. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 ◽  
Author(s):  
Julie A. Klaric ◽  
Stas Wüst ◽  
Stephanie Panier

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.


Author(s):  
Catherine J. Pears ◽  
Julien Brustel ◽  
Nicholas D. Lakin

Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.


2021 ◽  
Vol 4 (10) ◽  
pp. e202101159
Author(s):  
Alexandra K Ciminera ◽  
Sarah C Shuck ◽  
John Termini

We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N2-(1-carboxyethyl)-2ʹ-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α–mediated transcription of NER genes via enhanced 2-ketoglutarate–dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1293-1293
Author(s):  
Amar Desai ◽  
Yulan Qing ◽  
Stanton L. Gerson

Abstract Abstract 1293 Hematopoietic stem cell (HSC) maintenance is essential for sustained longevity and tissue function. The HSC population has lifelong self-renewing capabilities and gives rise to subsets of multipotent progenitor cells, and in turn a progeny of terminally differentiated mature cells consisting of all subtypes of the myeloid and lymphoid lineages. Long term reconstituting HSCs are necessary to replace these differentiated cells after losses caused by normal degradation or damage accumulation, with failure to replenish these stores being linked to a variety of human pathogeneses as well as aging phenotypes. HSC populations require functional DNA repair pathways in order to maintain their reconstitution capabilities but little is known about the pathways involved or the mechanism of regulation. While the majority of HSCs are quiescent at steady state, endogenous or exogenous stress can force these cells into proliferation, and previous evidence has suggested that the HSC reliance on DNA repair changes with this mobilization. Quiescent HSCs are believed to depend on non-homologous end joining (NHEJ) for repair but prior literature has shown that once forced into cycle, the DNA repair dependency shifts and is shared between homologous recombination (HR) and NHEJ. We use Exo1 deficiency as a model for homologous recombination loss in mice and demonstrate in vivo that HR is dispensable in quiescent HSCs. This is in contrast to loss of the complementary double strand break repair pathway NHEJ which has been shown to result in severe defects in HSC function. However when we force mobilize HSCs into cycle in vivo using the anti metabolite 5-fluorouracil we are able to demonstrate that the HR defects become detrimental to the animal as shown by increased cellular IR sensitivity and subsequent animal death. Additionally we use competitive repopulation studies to show that indeed the Exo1mut HSC population is more radiation sensitive after forced mobilization. This work begins to elucidate the consequences of the loss of homologous recombination in hematopoietic stem cells as well as the interplay between cell cycle status and DNA repair dependency. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Fábio Santiago ◽  
Rafaele Tavares Silvestre ◽  
Ubirani Barros Otero ◽  
Marianne Medeiros Tabalipa ◽  
Marilza de Moura Ribeiro-Carvalho ◽  
...  

Abstract Purpose Gas station workers (GSWs) are exposed to carcinogenic agents. The aim was to study the association of high somatic chromosome alterations (CAs) rates in the blood of GSWs and the polymorphisms of three genes playing a role in DNA double-strand break repair. Methods This is a cross-sectional study with 114 GSWs and 115 age-matched controls. Cytogenetic analyses, blood exams, medical interviews and genotypes for RAD51/G135C (rs1801320), ATM/P1054R (rs1800057) and CHEK2/T470C (rs17879961) genes were performed. Results The CA rate in GSWs was 9.8 CAs/1000 metaphases, and 19.1% of the workers had > 10 CAs per 1000 metaphases (group two). GSWs had decreased levels of monocytes (P = 0.024) in their blood exams. The number of variant alleles of the RAD51/G135C polymorphism was higher in GSWs (P = 0.011) compared to the controls, and were associated with enhanced number of CAs per worker (P = 0.008). No allele variant was found for CHEK2/T470C in this study. Conclusion The RAD51/G135C polymorphism appears to be related to genome instability in gas station workers. Increasing the knowledge of DNA repair gene variations involved in maintaining genomic stability in GSWs may be crucial for future cancer prevention.


2005 ◽  
Vol 25 (1) ◽  
pp. 34-43 ◽  
Author(s):  
Kazuhiko Yamamoto ◽  
Seiki Hirano ◽  
Masamichi Ishiai ◽  
Kenichi Morishima ◽  
Hiroyuki Kitao ◽  
...  

ABSTRACT Recent studies show overlap between Fanconi anemia (FA) proteins and those involved in DNA repair mediated by homologous recombination (HR). However, the mechanism by which FA proteins affect HR is unclear. FA proteins (FancA/C/E/F/G/L) form a multiprotein complex, which is responsible for DNA damage-induced FancD2 monoubiquitination, a key event for cellular resistance to DNA damage. Here, we show that FANCD2-disrupted DT40 chicken B-cell line is defective in HR-mediated DNA double-strand break (DSB) repair, as well as gene conversion at the immunoglobulin light-chain locus, an event also mediated by HR. Gene conversions occurring in mutant cells were associated with decreased nontemplated mutations. In contrast to these defects, we also found increased spontaneous sister chromatid exchange (SCE) and intact Rad51 foci formation after DNA damage. Thus, we propose that FancD2 promotes a subpathway of HR that normally mediates gene conversion by a mechanism that avoids crossing over and hence SCEs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brandon J. Payliss ◽  
Ayushi Patel ◽  
Anneka C. Sheppard ◽  
Haley D. M. Wyatt

All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.


Mutagenesis ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Samuele Lodovichi ◽  
Francesca Bellè ◽  
Tiziana Cervelli ◽  
Alessandra Lorenzoni ◽  
Luisa Maresca ◽  
...  

Abstract Evaluation of the functional impact of germline BRCA1 variants that are likely to be associated to breast and ovarian cancer could help to investigate the mechanism of BRCA1 tumorigenesis. Expression of pathogenic BRCA1 missense variants increased homologous recombination (HR) and gene reversion (GR) in yeast. We thought to exploit yeast genetics to shed light on BRCA1-induced genome instability and tumorigenesis. We determined the effect on GR of several neutral and pathogenic BRCA1 variants in the yeast strain RSY6wt and its isogenic DSB repair mutants, such as mre11∆, rad50∆ and rad51∆. In the RSY6wt, four out of five pathogenic and two out of six neutral variants significantly increased GR; rad51∆ strain, the pathogenic variants C61G and A1708E induced a weak but significant increase in GR. On the other hand, in rad50∆ mutant expressing the pathogenic variants localised at the BRCT domain, a further GR increase was seen. The neutral variant N132K and the VUS A1789T induced a weak GR increase in mre11∆ mutant. Thus, BRCA1 missense variants require specific genetic functions and presumably induced GR by different mechanisms. As DNA repair is regulated by cell cycle, we determined the effect on GR of BRCA1 variants in cell cycle-arrested RSYwt cells. GR is highly BRCA1-inducible in S-phase-arrested cells as compared to G1 or G2. Sequence analysis of genomic DNA from ILV1 revertant clones showed that BRCA1-induced ilv1-92 reversion by base substitution when GR is at least 6-fold over the control. Our study demonstrated that BRCA1 may interfere with yeast DNA repair functions that are active in S-phase causing high level of GR. In addition, we confirmed here that yeast could be a reliable model to investigate the mechanism and genetic requirements of BRCA1-induced genome instability. Finally, developing yeast-based assays to characterise BRCA1 missense variants could be useful to design more precise therapies.


Sign in / Sign up

Export Citation Format

Share Document