Functional Effects Of NOTCH1 Mutations In Chronic Lymphocytic Leukemia Patients

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4117-4117
Author(s):  
Francesca Arruga ◽  
Branimir Gizdic ◽  
Sara Serra ◽  
Tiziana Vaisitti ◽  
Davide Rossi ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL), is characterized by the expansion of mature B lymphocytes present in blood, bone marrow and lymphoid organs. Clinical behavior is highly heterogeneous, thus requiring timely identification of high-risk patients. NOTCH1 encodes a trans-membrane receptor acting as a ligand-activated transcription factor. NOTCH signaling initiates when the ligand, from either the Jagged or Delta families, binds to the receptor and induces successive proteolytic cleavages, resulting in the release and nuclear translocation of the NOTCH intra-cellular domain (NICD). Signaling is terminated by phosphorylation of the PEST domain of NOTCH1, triggering its ubiquitination and proteasomal degradation. Whole exome sequencing approaches have revealed NOTCH1 mutations in 5-10% newly diagnosed CLL cases, with their prevalence increasing to 15-20% in progressive or relapsed patients. The most frequent mutation is 7544-7545delCT frameshift deletion in exon 34, resulting in disruption of the C-terminal PEST domain. Truncation of the PEST domain is predicted to result in NOTCH1 impaired degradation, stabilization of the active NOTCH1, and deregulated signaling. The present study was undertaken with the aim to compare NOTCH1 expression and functional role in CLL patients harboring wild type (WT) or mutated (M) NOTCH1 gene. NOCTH1 mRNA and surface protein were expressed at comparable high levels in peripheral blood (PB) CLL cells obtained from NOTCH1 M and WT patients, consistent with a more general requirement of NOTCH1 signaling in this leukemia. However, at a variance of NOTCH1 WT cases, NOCTH1 M patients displayed remarkable accumulation of both the intermediate molecular species of the activated NOCTH1 receptor, as well as of the active NICD. Consistently, by gene expression profiling NOCTH1 M patients displayed significantly higher levels of HES1 and DTX1, the main NOTCH1 target genes. Overall, these data suggest a more active signaling pathway in NOTCH1 M CLL than in NOTCH1 WT cases. Expression of NOTCH1 and of its target gene (DTX1) varied across disease compartments, being higher in CLL cells obtained from the lymph nodes (LN), as compared to paired samples derived from the PB or the bone marrow (BM). By immunohistochemical analyses of primary LN tissue samples, NOTCH1 M CLL showed an intense nuclear staining as opposed to the more cytoplasmic distribution observed in NOTCH1 WT samples. These data suggest a more active NOTCH1 signaling in CLL residing in the LN microenvironment and confirm the functional effect of NOTCH1 mutations in vivo. When PB CLL cells were cultured in vitro in the absence of any supporting layer or stimulation, they showed a rapid down regulation of the NOTCH pathway, with complete loss of NICD after 24 hours paralleled by a sharp decrease in HES1 and DTX1 transcription. Consistently, levels of presenilin-1 (PSEN1), the catalytic subunit of the g-secretase complex, were also down-regulated offering a partial mechanistic explanation for the NICD loss. NOTCH1 mRNA levels remained unchanged, with accumulation of the receptor at the plasma membrane. These effects were independent of NOTCH1 mutation status and suggested the dependence of NOTCH1 signaling activation upon in vivo microenvironmental interaction, even in NOTCH1 M CLL. Within primary LN biopsies from CLL patients, the NOTCH1 ligand, was highly expressed on CD68+ elements of myeloid origin. This observation prompted the in vitro recreation of a lymphoid niche by co-culturing Jagged1+ nurse-like cells (NLC) with autologous CLL cells. Under these conditions, NOTCH1 activity in CLL cells was sustained over time, as shown by Q-PCR analyses of DTX1 and PSEN1. Moreover, NLCs protect NOTCH1 M CLL cells from fludarabine-induced apoptosis. This microenvironment-induced chemoresistance was prevented by pre-treatment of NOTCH1 M CLL cells with specific g-secretase inhibitors, to block NOTCH1 activation. Taken together, these results show that the 7544-7545delCT mutation in the PEST domain of NOTCH1 has a stabilizing effect on NOTCH1 signaling pathway. They also show that micro-environmental interactions are critical in activating NOTCH1 pathway both in the M and WT patients. Lastly, these results show that NOTCH1 signals micht create local conditions that favour drug resistance, thus making NOTCH1 a potential molecular target in CLL. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3683-3683
Author(s):  
Jerome Paggetti ◽  
Guy J. Berchem ◽  
Etienne Moussay

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the accumulation in the blood and the primary lymphoid organs of long-lasting, mature, but non-functional B lymphocytes. Although CLL B cells can survive for long time periods in vivo, cells are undergoing apoptosis relatively quickly in vitro. This spontaneous apoptosis and their sensitivity to drugs is strongly reduced in presence of bone marrow mesenchymal stem cells (MSC) and endothelial cells (EC), which provide anti-apoptotic stimuli to CLL cells via direct contact or secretion of soluble factors. We recently reported the first profiling of circulating miRNA obtained from plasma of CLL patients (Moussay et al., PNAS, 2011). Specific miRNAs were found at higher level in the plasma of CLL patients compared to healthy donors. Exosomes, which are small extracellular vesicles of 50-150 nm originating from endosomes, are now known to efficiently transport nucleic acids and transfer mRNA, microRNA and proteins to target cells. Therefore, exosomes constitute a new component of intercellular communication and their role in CLL remains totally unknown. The specific miRNA signature from plasma of CLL patients combined with our observations that primary CLL B cells can transfer vesicles to MSC through 0.4 µm culture inserts in vitro prompted us to investigate whether CLL B cells secrete exosomes that could modify cells of the bone marrow microenvironment to produce tumor growth promoting factors locally in order to favor their own survival. We isolated, purified and characterized exosomes derived from CLL cell lines, primary cells culture supernatants and plasma from CLL patients. Proteins, mRNA and microRNAs contents were evaluated by high-throughput methods (LC-MS, microarrays) revealing in particular the presence of oncogenic molecules. In vitro, purified CLL-exosomes were found to rapidly enter target cells (already after 1h in MSC and endothelial cells) and to transfer proteins and miRNA. Flow cytometry showed that transferred proteins were expressed at cell surface. Luciferase reporter assay confirmed that miRNAs were efficient in targeting cellular mRNA. Exosomes could also be taken up ex vivo and in vivo by mouse bone marrow cells. Functionally, CLL-exosomes activated key signaling pathways (PI3K, AKT, and MAPK) Immunoblotting indicated the rapid phosphorylation of kinases after 5 min of incubation with CLL-exosomes and the subsequent activation of the canonical NF-kB pathway. We also observed that CLL-exosomes modulated gene expression in target cells among which cytokines (BAFF, IL-6, and IL-8), chemokines (CCL2/MCP-1, CCL5/RANTES, and CXCL1), and other factors involved in cell adhesion and migration (ICAM-1 and MMP-1). These factors were also secreted in the supernatants of MSC and EC as detected by antibody arrays. Exosomes were also shown to increase MSC and EC proliferation, to stimulate actin remodeling, cell migration and to enhance EC angiogenic capabilities (tube formation and aortic ring assays). In conclusion, CLL-exosomes contain pro-oncogenic molecules and strongly affect key functions of MSC and EC which are critical component of the bone marrow microenvironment. Activation of these cells by CLL-exosomes led to release of cytokines/chemokines and oncogenic factors that could promote angiogenesis and also favor leukemic cells survival and migration. Our findings may lead to applications in both diagnosis and therapy development. Molecules identified at the surface or inside CLL-exosomes may be further used as cancer biomarkers. Finally, the description of cell-to-cell communication mechanisms will generate opportunities of innovative therapeutic strategies and confirms the crucial role of exosomes in the development of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 604-604
Author(s):  
Sarah E. M. Herman ◽  
Jade Jones ◽  
Rashida Z. Mustafa ◽  
Mohammed Farooqui ◽  
Adrian Wiestner

Abstract The Bruton’s tyrosine kinase inhibitor ibrutinib has recently been shown to be well tolerated, and to induce objective clinical responses in the majority of patients, irrespective of adverse prognostic markers (Byrd et al., NEJM 2013). Despite the demonstrated clinical activity, ibrutinib also leads to a transient lymphocytosis that is thought to reflect a redistribution of cells from tissue compartments into the peripheral blood. The mechanisms contributing to this lymphocytosis are not well understood. To date, two groups have demonstrated that in vitro treatment with ibrutinib inhibits migration of CLL cells in chemokine gradients (de Rooji et al., Blood 2012 and Ponader et al., Blood 2012). Here we sought to assess the in vivo effect of ibrutinib on cellular migration. To validate our assay we first treated CLL cells with 1uM ibrutinib for 1 hour in vitro and measured migration of CLL cells to a mix of SDF-1 (at 200ng/mL) and CCL19 (at 100ng/mL), two chemo-attractants known to induce migration of CLL cells. Migration was assayed in a dual chamber system separated by a membrane with 5µm pores after 3 hours of incubation. Confirming published data we found a significant reduction in the migration index (ratio of migration to chemokines divided by migration to media alone) of ibrutinib treated cells compared to untreated cells (mean reduction 24%; P = 0.04). Next, we analyzed the migration of CLL cells obtained from patients (n = 9) enrolled on a clinical trial with single agent ibrutinib that were sampled pre-treatment and after 4 weeks on drug. We observed highly variable responses; in about half of the patients treated cells showed increased migration, while in the other half there was decreased migration to the SDF-1/CCL19 mix. Interestingly, patients showing a decrease in migration on treatment often had del17p but there was no difference in regards to IGHV mutation status and no correlation to the degree of lymphocytosis observed in the patient. T-cell migration was not affected by ibrutinib. In order to extend the analysis to a mix of chemo-attractants that the tumor cells may encounter in vivo we used the supernatant harvested from bone marrow aspirates and found that it efficiently induced migration of CLL cells in the dual chamber assay (mean fold increase 5.2 compared to control). Comparing CLL cells from patients sampled pre-treatment to those obtained on treatment day 28 we again found the same mixed effects of ibrutinib on the ability of CLL cells to migrate to bone marrow plasma as we had observed with the SDF-1/CCL19 mix. Thus, direct inhibition of CLL cell migration can account for only a subset of patients with treatment-induced lymphocytosis. Given reports that ibrutinib can inhibit cytokine and chemokine secretion from CLL cells and T-cells (Ponader et al., Blood, 2012; Herman et al., Blood, 2011), we hypothesized that ibrutinib treatment might change the content of chemo-attractants in the bone marrow We therefore compared the ability of the bone marrow plasma obtained pre-treatment and after 2 months on ibrutinib to attract CLL cells (these cells were obtained from the peripheral blood pre-treatment from the same patient donating the marrow). We found that in 4/4 patients evaluated there was a significant reduction in the migration of CLL cells to the on-treatment bone marrow plasma compared to the matching pre-treatment sample (mean decrease 20%; P < 0.05). In conclusion, migration of CLL cells from patients on ibrutinib can be inhibited or increased, with most del17p patients showing decreased migration. Intriguingly, these patients tend to have slower resolution of the treatment induced lymphocytosis, raising the question whether inhibition of homing to tissue sites could affect the time to resolution of the lymphocytosis. In addition, we provide evidence that bone marrow plasma on ibrutinib therapy has a reduced capacity to attract CLL cells, suggesting that ibrutinib may alter the composition of the bone marrow microenvironment This work was supported by the Intramural Research Program of NHLBI, NIH. We thank our patients for donating blood and tissue samples to make this research possible. We acknowledge Pharmacyclics for providing study drug. Disclosures: Off Label Use: Ibrutinib in chronic lymphocytic leukemia.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2196-2196
Author(s):  
Ashima Shukla ◽  
Christine E Cutucache ◽  
Karan Rai ◽  
Siddharth Rai ◽  
Rene Opavsky ◽  
...  

Abstract Background: Chronic Lymphocytic Leukemia (CLL) is the most common adult leukemia in the United States. Clinical heterogeneity, a characteristic feature of CLL is a major problem in the clinical management of this currently incurable leukemia. We and others have demonstrated that the tissue microenvironment, specifically the lymph node (LN), influence the biological and clinical behavior including the clinical heterogeneity of CLL. Using gene expression profiling of CLL cells from peripheral blood (PB), bone marrow (BM) and LNs, we identified Cav-1 a member of the Tolerogenic Signature (genes associated with host immune tolerance) as one of the candidate genes which might be involved in the pathogenesis of CLL. We found that Cav-1 levels were significantly elevated (11 fold) in CLL cells from LNs compared to BM and PB. Cav-1 is the major element of caveolae, which are flask-shaped membrane invaginations. Cav-1 is involved in multiple cellular processes like the regulation and transportation of cellular cholesterol and lipids, clathrin independent endocytosis and signal transduction leading to oncogenesis or tumor suppression. We have previously shown that knock down of Cav-1 results in a significant decrease in cell migration and proliferation of primary human CLL cells in vitro. We have also demonstrated that knock down of Cav-1 prevents CLL cells from forming immune synapses. These immune synapses are important for the interaction between the CLL cells and their tumor microenvironment. These results suggest that Cav-1 protect CLL cells from undergoing apoptosis and enhances their migration in vitro. Objectives and Methodology: To understand the precise role of Cav-1 in leukemic progression in vivo, we crossed Cav-1-/- mice to Eµ-TCL1 mice, which is a well-established transgenic murine model for CLL. The offspring were observed and evaluated for the development of CLL. These mice were sacrificed at the age of 12, 24, 36 and 40+ weeks and peripheral blood, bone marrow and spleen and were examined for the presence of CD5+B220+CD19+ CLL cells using flow cytometry. Spleen, lymph nodes, liver, lungs and kidney were evaluated for the presence of CLL cells using H&E staining of histologic slides. Results: To study the role of Cav-1 in Eµ-TCL1, we isolated splenic B cells and measured the expression of Cav-1. We observed a gradual increase in the expression of Cav-1 in splenic B cells from Eµ-TCL1 mice at age of 12, 24 and 36 weeks when compared with wild type mice. This suggested that Cav-1 might be playing a role in CLL progression in Eµ-TCL1 mice. Therefore, to study the role of Cav-1 in CLL disease progression we decreased the expression of Cav-1 in vivo by breeding Eµ-TCL1 with Cav1 knockout mice. We generated Eµ-TCL1-Cav1-/+ and Eµ-TCL1-Cav1-/- mice to study the effect of Cav-1 knock down in aggressiveness of CLL in vivo. We have shown that Cav-1 is overexpressed in CLL cells from patients with poorer clinical outcome and protects CLL cells from undergoing apoptosis. Therefore, we analyze the number of CLL cells in Eµ-TCL1-Cav1-/+ and Eµ-TCL1-Cav1-/- mice. We observed a significant reduction in the number of B220+CD5+ CLL cells population in bone marrow and spleen of Eµ-TCL1-Cav1-/+ and Eµ-TCL1-Cav1-/- mice when compared with Eµ-TCL1-Cav1wt/wt mice. We have previously shown that Cav-1 is important for CLL cells migration in vitro. Therefore, to study its effect in vivo we analyzed infiltration of CLL cells in spleen, lymph nodes, liver, kidney and lungs in these mice. There was no or significant decrease in tumor infiltration of CLL cells in spleen, lymph nodes, liver, lungs and kidney in Eµ-TCL1-Cav1-/+ and Eµ-TCL1-Cav1-/- mice when compared with Eµ-TCL1-Cav1wt/wt alone. Next, we wanted to examine the effect of Cav-1 knock down on splenomegaly and hepatomegaly. We found that there was a significant decrease in splenomegaly and hepatomegaly in Eµ-TCL1-Cav1-/+ and Eµ-TCL1-Cav1-/- mice. The spleen and liver size of Eµ-TCL1-Cav1-/+ and Eµ-TCL1-Cav1-/- mice was significantly reduced when compared with Eµ-TCL1 mice. Together these results suggest that high expression of Cav-1 in CLL cells leads to enhance proliferation and promotes disease progression in Eµ-TCL1 mice. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Jiewei Lin ◽  
Zhiwei Xu ◽  
Junjie Xie ◽  
Xiaxing Deng ◽  
Lingxi Jiang ◽  
...  

AbstractAPOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.


Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Blood ◽  
1978 ◽  
Vol 52 (1) ◽  
pp. 255-260 ◽  
Author(s):  
R Hoffman ◽  
S Kopel ◽  
SD Hsu ◽  
N Dainiak ◽  
ED Zanjani

Abstract The pathogenesis of the anemia associated with malignancy was investigated in a patient with T cell chronic lymphocytic leukemia. The plasma clot culture system was used as a measure in vitro of erythropoiesis. The patient's peripheral blood and marrow T lymphocytes obtained both before and after transfusion therapy suppressed erythroid colony formation by normal human bone marrow cells. Pretreatment of the patient's bone marrow T cells by antithymocyte globulin (ATG) and complement reversed this suppression. In addition, pretreatment of the patient's marrow cells with ATG and complement markedly augmented erythropoiesis in vitro. The expression of erythroid activity caused by the selective destruction of the suppressor T lymphocytes in the patient's bone marrow with ATG and the suppression of normal erythropoiesis by the patient's bone marrow and peripheral blood lymphocytes suggest that interaction between the malignant T cell and the erythropoietin-responsive stem cell is important in production of anemia in this patient.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yanzhu Lu ◽  
Junchao Xing ◽  
Xiaolong Yin ◽  
Xiaobo Zhu ◽  
Aijun Yang ◽  
...  

Background and Aims.Host-derived cells play crucial roles in the regeneration process of tissue-engineered constructs (TECs) during the treatment of large segmental bone defects (LSBDs). However, their identity, source, and cell recruitment mechanisms remain elusive.Methods.A complex model was created using mice by combining methods of GFP+bone marrow transplantation (GFP-BMT), parabiosis (GFP+-BMT and wild-type mice), and femoral LSBD, followed by implantation of TECs or DBM scaffolds. Postoperatively, the migration of host BM cells was detected by animal imaging and immunofluorescent staining. Bone repair was evaluated by micro-CT. Signaling pathway repressors including AMD3100 and SP600125 associated with the migration of BM CD44+cells were further investigated.In vitro, transwell migration and western-blotting assays were performed to verify the related signaling pathway.In vivo, the importance of the SDF-1/CXCR4-JNK pathway was validated by ELISA, fluorescence-activated cell sorting (FACS), immunofluorescent staining, and RT-PCR.Results.First, we found that host cells recruited to facilitate TEC-mediated bone repair were derived from bone marrow and most of them express CD44, indicating the significance of CD44 in the migration of bone marrow cells towards donor MSCs. Then, the predominant roles of SDF-1/CXCR4 and downstream JNK in the migration of BM CD44+cells towards TECs were demonstrated.Conclusion.Together, we demonstrated that during bone repair promoted by TECs, BM-derived CD44+cells were essential and their migration towards TECs could be regulated by the SDF-1/CXCR4-JNK signaling pathway.


Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 582-595 ◽  
Author(s):  
Marwan Kwok ◽  
Nicholas Davies ◽  
Angelo Agathanggelou ◽  
Edward Smith ◽  
Ceri Oldreive ◽  
...  

Key PointsATR inhibition is synthetically lethal to TP53- or ATM-defective CLL cells. ATR targeting induces selective cytotoxicity and chemosensitization in TP53- or ATM-defective CLL cells in vitro and in vivo.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jan A. Burger

Abstract Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.


Sign in / Sign up

Export Citation Format

Share Document