Tuning Of mTOR In Therapeutic T Cells As A Strategy To Manufacture Effector and Memory T Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4488-4488
Author(s):  
Velica Pedro ◽  
Mathias Zech ◽  
Hans Stauss ◽  
Ronjon Chakraverty

Retroviral gene transfer of T cell receptors (TCRs) or chimeric-antigen receptors has been successfully used to redirect T cell specificity to tumor antigens and has shown promising results in clinical trials for patients with melanoma and B cell malignancies. Successful therapy relies not only on the generation of an efficient effector response but also in the ability of T cells to engraft and persist during and after cancer rejection. Yet, both aspects can be compromised. On the one hand, effector T cells can be disarmed in vivo by the immunosuppressive environment of the tumor, where the depletion of key nutrients (glucose, arginine, etc.) and the predominance of inhibitory signals (TGF-β, PD-L1, etc.) dampen their functions. On the other hand, current retroviral gene transfer protocols require T cells to be activated and expanded ex vivo,driving terminal effector differentiation at the expense of the capacity for self-renewal (“stemness”). This may prevent the generation of long-term protective memory and compromise therapeutic success. The mechanistic target of rapamycin (mTOR) pathway has recently emerged as a driver of effector differentiation in CD8 T cells by acting as a signalling bridge between extracellular stimuli and effector differentiation. Whilst high doses of rapamycin are known to be immunosuppressive, a low dose regimen increases memory output after a viral challenge without impairing viral clearance. These and other studies suggest that mTOR can be used as a rheostat to regulate T cell differentiation to clinical advantage. Using a mouse model of TCR gene therapy we aimed to produce T cells in which the mTOR pathway is either hyperactive, in order to generate ‘super-effectors’ that can function in the tumor microenvironment, or hypoactive in order to preserve “stemness”, increase engraftment and produce better recall immunity. To this purpose we transferred genes into therapeutic T cells encoding either (1) an mTOR activator, RHEB (Ras homolog enriched in brain) or (2) an mTOR inhibitor, PRAS40 (proline-rich Akt substrate 40 kDa). Upon stimulation in vitro,the phosphorylation of ribosomal protein S6, an mTOR downstream target, was increased in RHEB-expressing cells and decreased in PRAS40-expressing cells. RHEB T cells demonstrated a greater propensity than controls for blast formation, lower expression of L-selectin, increased IFN-g production and resistance to TGF-b. In contrast, PRAS40 T cells were smaller in size, expressed higher surface levels of L-selectin and had reduced but not ablated production of IFN-g, IL-2 and TNF-a production. In vivo, RHEB T cells co-transduced with a tumor-specific TCR showed increased initial expansion that was associated with increased tumor protection. However, this was followed by a steep decrease in T cell numbers compared to control cells, with preliminary experiments indicating that RHEB cells produced a less robust re-call response upon antigenic re-challenge. In contrast, PRAS40 cells failed to expand in vivo or to infiltrate tumors, resulting in complete lack of protection. Yet, the few PRAS40 cells remaining in circulation were predominately high for L-selectin, IL-7Ra and Sca-1 (markers associated with ‘stemness’). These results demonstrated that constitutive suppression of mTOR was of no therapeutic advantage. To circumvent this, we developed a doxycycline (DOX)-inducible PRAS40 vector in which mTOR suppression in T cells can be temporally controlled in vivo. Unlike the constitutive vector used previously, with the DOX-ON system the level of mTOR suppression was lower and furthermore, could be applied only during the period of antigen exposure. Thus, when DOX was added during tumor challenge, PRAS40-expressing T cells could reject tumor as well as controls. However, after DOX was withdrawn and transgene expression turned off, increased numbers of therapeutic T cells were found in peripheral blood. When re-challenged, these T cells produced a stronger recall response relative to cells in which mTOR had not been suppressed initially. Thus, our results show that genetic manipulation of mTOR can be used to alter the intrinsic properties of T cells and direct either their effector or memory differentiation. This approach maybe useful in designing better therapeutic immunotherapeutic strategies according to the type of T cell response required in vivo. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3110-3110
Author(s):  
Erwan R. Piriou ◽  
Christine Jansen ◽  
Karel van Dort ◽  
Iris De Cuyper ◽  
Nening M. Nanlohy ◽  
...  

Abstract Objective: EBV-specific CD8+ T cells have been extensively studied in various settings, and appear to play a major role in the control of EBV-related malignancies. In contrast, it is still unclear whether EBV-specific CD4+ T cells play a role in vivo. To study this question, an assay was developed to measure the CD4+ T-cell response towards two EBV antigens, in both healthy (n=14) and HIV-infected subjects (n=23). In addition, both HAART-treated (n=12) and untreated HIV+ individuals (n=14) - including progressors to EBV-related lymphoma - were studied longitudinally. Methods: EBV-specific CD4+ T cells were stimulated with peptide pools from latent protein EBNA1 and lytic protein BZLF1, and detected by measurement of IFNg-production. Results: After direct ex vivo stimulation, EBNA1 or BZLF1-specific IFNg- (and/or IL2) producing CD4+ T cell numbers were low, and measurable in less than half of the subjects studied (either HIV- and HIV+). Therefore, PBMC were cultured for 12 days in the presence of peptides and IL2 (from day 3), and then restimulated with peptides, allowing specific and reproducible expansion of EBV-specific CD4+ T cells, independent of HLA type and ex vivo antigen processing. Interestingly, numbers of EBV-specific CD4+ T cells inversely correlated with EBV viral load, implying an important role for EBV-specific CD4+ T cells in the control of EBV in vivo. Untreated HIV-infected individuals had a lower CD4+ T cell response to EBNA1 and BZLF1 as compared to healthy EBV carriers and HAART-treated HIV+ subjects. In longitudinal samples, EBNA1-specific, but not BZLF1-specific T-cell numbers increased after HAART, while EBV load was not affected by treatment. In all the progressors to EBV-related lymphoma, EBV-specific CD4+ T cells were lost at least 24 months before lymphoma diagnosis. Conclusions: Both cross-sectional and longitudinal data suggest an important role for EBV-specific CD4+ T cells in the control of EBV-related malignancies. Furthermore, it seems that HAART treatment leads to recovery of EBNA1-specific, but not BZLF1-specific CD4+ T-cell responses, implying changes in the latency pattern of EBV, despite an unaltered cell-associated EBV DNA load. Thus, early HAART treatment might prevent loss of specific CD4+ T-cell help and progression to NHL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2046-2046
Author(s):  
David M Markusic ◽  
Ashley T Martino ◽  
Federico Mingozzi ◽  
Katherine A. High ◽  
Roland W Herzog

Abstract Abstract 2046 Long-term partial correction of severe hemophilia B following peripheral vein delivery of an AAV8-factor IX vector in human subjects has recently been reported. However, the two patients in the high-dose cohort experienced a rise in liver transaminases and drop in circulating F.IX levels that was halted with steroid treatment. In both the AAV8 and in an earlier AAV2-based trial, a dose of 2×1012 vg/kg seemed above a threshold for the activation of capsid specific memory CD8+ cytotoxic T lymphocytes (CTL). Therefore, reaching a target of > 5% sustained F.IX level (for a change to mild disease) is currently limited by activation of T cell immunity against capsid. New clinical trials are in the pipeline with AAV8 vectors expressing hyperactive F.IX variants that provide therapeutic F.IX expression at lower vector doses, with a goal of avoiding activation of CD8+ T cell memory response. Lack of a preclinical model to study CTL-mediated loss of AAV gene therapy has hampered efforts at clinical development. Neither mice nor non-human primates have recapitulated the human experience, making it difficult to evaluate, prior to clinical trial design, the effect of the serotype, vector dose, and other parameters of the protocol on targeting by capsid-specific T cells. To solve this problem, we have recently developed a murine model, in which male BALB/c RAG −/− mice receive hepatic AAV gene transfer followed by intravenous administration of in vitro expanded strain-matched capsid-specific CD8+ T cells (specific to an MHC I capsid epitope conserved between AAV2 and AAV8 serotypes shared between BALB/c mice and humans expressing the B*0702 molecule). In this model, AAV2-F.IX transduced mice showed a rise in liver enzymes, loss of circulating F.IX, and loss of F.IX expressing hepatocytes, following adoptive transfer of the CTL one day but not 7 or 14 days after gene transfer. CD8+ T cell infiltrates were observed 7 days following adoptive transfer and were absent at 28 days, suggesting a small window for optimal AAV2 capsid antigen presentation in the liver. Additionally, mice were protected from capsid specific CD8+ T cells when treated with the proteasome inhibitor bortezomib, which impairs the generation of peptide epitopes for MHC I antigen presentation. We next tested in our model AAV8 vectors, which in mice show superior tropism for liver. Published pre-clinical data by others suggested lack of capsid-specific CD8+ cell activation with this serotype. While this was not borne out in a clinical trial, the onset of T cell responses and of transaminitis in humans appeared to be delayed for AAV8 vector (8–9 weeks after gene transfer) compared to AAV2 (3–4 weeks). In comparison to AAV2, CD8+ T cell transfer in AAV8 injected mice had a milder impact on circulating F.IX levels (<50% loss of expression as opposed to 4-fold loss with AAV2), and CD8+ T cell infiltrates were largely absent at day 7. In two different experiments, 25–40% of F.IX expressing hepatocytes were lost compared to AAV8-F.IX transduced mice that received no or control CD8+ T cells. However, when the T cells were transferred 7 or 14 days after AAV8 administration, a more robust loss of systemic F.IX expression was observed (3- to 5-fold), with a 45% and 32% reduction in F.IX expressing hepatocytes, respectively (Fig 1 A-C). CD8+ T cell infiltrates were prevalent by day 42 in the livers of these animals. Together, these data suggest that optimal AAV8 capsid presentation in the murine liver occurs between days 28 and 42 following gene transfer. This delay in targeting of AAV8 transduced murine liver is consistent with the delay observed between the AAV2 and AAV8 F.IX clinical trials. This murine model should be useful to (1) evaluate novel AAV serotypes and capsid variants, (2) test the effect of the vector dose, (3) test the effect of pharmacological modulation on capsid presentation and targeting by capsid-specific CTL, and (4) provide guidance for the timing for immune suppression. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Disclosures: High: Amsterdam Molecular Therapeutics: ; Baxter Healthcare: Consultancy; Biogen Idec: Consultancy; bluebird bio, Inc.: Membership on an entity's Board of Directors or advisory committees; Genzyme, Inc.: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: ; Sangamo Biosciences: ; Shire Pharmaceuticals: Consultancy. Herzog:Genzyme Corp.: Royalties, AAV-FIX technology, Royalties, AAV-FIX technology Patents & Royalties.


2020 ◽  
Author(s):  
Flavia Ferrantelli ◽  
Chiara Chiozzini ◽  
Francesco Manfredi ◽  
Patrizia Leone ◽  
Maurizio Federico

AbstractSevere acute respiratory syndrome coronavirus (SARS-CoV)-2 is spreading rapidly in the absence of validated tools to control the growing epidemic besides social distancing and masks. Many efforts are ongoing for the development of vaccines against SARS-CoV-2 since there is an imminent need to develop effective interventions for controlling and preventing SARS-CoV-2 spread. Essentially all vaccines in most advanced phases are based on the induction of antibody response against either whole or part of spike (S) protein. Differently, we developed an original strategy to induce CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). We exploited this technology with the aim to identify a clinical candidate defined as DNA vectors expressing SARS-CoV-2 antigens inducing a robust CD8+ T-cell response. This is a new vaccination approach employing a DNA expression vector encoding a biologically inactive HIV-1 Nef protein (Nefmut) showing an unusually high efficiency of incorporation into EVs even when foreign polypeptides are fused to its C-terminus. Nanovesicles containing Nefmut-fused antigens released by muscle cells are internalized by antigen-presenting cells leading to cross-presentation of the associated antigens thereby priming of antigen-specific CD8+ T-cells. To apply this technology to a design of anti-SARS-CoV-2 vaccine, we recovered DNA vectors expressing the products of fusion between Nefmut and four viral antigens, namely N- and C-terminal moieties of S (referred to as S1 and S2), M, and N. All fusion products are efficiently uploaded in EVs. When the respective DNA vectors were injected in mice, a strong antigen-specific CD8+ T cell immunity was generated. Most important, high levels of virus-specific CD8+ T cells were found in bronchoalveolar lavages of immunized mice. Co-injection of DNA vectors expressing the diverse SARS-CoV-2 antigens resulted in additive immune responses in both spleen and lung. EVs engineered with SARS-CoV-2 antigens proved immunogenic also in the human system through cross-priming assays carried out with ex vivo human cells. Hence, DNA vectors expressing Nefmut-based fusion proteins can be proposed as anti-SARS-CoV-2 vaccine candidates.


2017 ◽  
Vol 313 (3) ◽  
pp. L534-L547 ◽  
Author(s):  
Aïda Meghraoui-Kheddar ◽  
Alexandre Pierre ◽  
Mehdi Sellami ◽  
Sandra Audonnet ◽  
Flora Lemaire ◽  
...  

Chronic obstructive pulmonary disease and emphysema are associated with increased elastin peptides (EP) production because of excessive breakdown of lung connective tissue. We recently reported that exposure of mice to EP elicited hallmark features of emphysema. EP effects are largely mediated through a receptor complex that includes the elastin-binding protein spliced-galactosidase (S-gal). In previous studies, we established a correlation between cytokine production and S-gal protein expression in EP-treated immune cells. In this study, we investigated the S-gal-dependent EP effects on T-helper (Th) and T-cytotoxic (Tc) responses during murine EP-triggered pulmonary inflammation. C57BL/6J mice were endotracheally instilled with the valine-glycine-valine-alanine-proline-glycine (VGVAPG) elastin peptide, and, 21 days after treatment, local and systemic T-lymphocyte phenotypes were analyzed at cytokine and transcription factor expression levels by multicolor flow cytometry. Exposure of mice to the VGVAPG peptide resulted in a significant increase in the proportion of the CD4+ and CD8+ T cells expressing the cytokines IFN-γ or IL-17a and the transcription factors T-box expressed in T cells or retinoic acid-related orphan receptor-γt (RORγt) without effects on IL-4 and Gata-binding protein 3 to DNA sequence [A/T]GATA[A/G] expression. These effects were maximized when each T-cell subpopulation was challenged ex vivo with EP, and they were inhibited in vivo when an analogous peptide antagonizing the EP/S-gal interactions was instilled together with the VGVAPG peptide. This study demonstrates that, during murine emphysema, EP-S-gal interactions contribute to a Th-1 and Th-17 proinflammatory T-cell response combined with a Tc-1 response. Our study also highlights the S-gal receptor as a putative pharmacological target to modulate such an immune response.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 860-860
Author(s):  
Greet Verstichel ◽  
David Vermijlen ◽  
Liesbet Martens ◽  
Glenn Goetgeluk ◽  
Yvan Saeys ◽  
...  

Abstract The thymus plays a central role in self-tolerance by preventing strongly self-reactive thymocytes from accumulating as naïve T cell receptor (TCR) αβ+ T cells in the periphery. The elimination of auto-reactive T cells from the naïve pool is in part mediated by deletion during conventional negative selection. Alternatively, self-reactive thymocytes can also be positively selected in response to strong TCR signals during agonist selection and functionally differentiate to innate TCRαβ + T cells such as the CD8αα+ double negative (DN) T cells. How thymocytes discriminate between these opposite outcomes remains unclear. We identified a novel agonist-selected PD-1+ CD8αα+ subset of mature CD8+ T cells in human thymus. Using the same markers a similar population was also identified in cord blood at about the same frequency as TCRγδ+ cells. This population expresses high levels of Helios, indicative of strong TCR engagement, and displays an effector phenotype associated with agonist selection. Indeed, PD-1+CD8αα+ T cells exhibit innate production of IFN-γ and an elevated T-bet to Eomes ratio typical of effector CD8 T cells. These cells are CD62L-, CXCR3+ and Hobit high suggesting that these cells leave the thymus and home to the tissues. Interestingly, in vitro CD3/TCR stimulation of sorted early post-β-selection thymocyte blasts uniquely gives rise to this innate subset, whereas small CD4+CD8+ double positive precursors fail to survive strong TCR signals. The generation of the innate subset seems to arise also in vivo from early post-β-selection thymocyte blasts as these two populations have an identical TCRα repertoire: ex vivo isolated PD-1+CD8αα+ thymocytes are skewed for early 3' TRAV and 5' TRAJ rearrangements compared to conventional CD8 T cells. A similar skewing was found in early post-β-selection thymocyte blasts. As TCRα rearrangements are terminated by TCR engagement of agonist selection, this is strong evidence for a precursor progeny relationship. Together, we conclude that human CD8αα+ T cells are preferentially selected by strong TCR engagement on a subset of progenitors that express a full TCRαβ early on, leading to the generation of a post-selection T cell population with innate functional capacity and a markedly distinct TCR repertoire. These findings uncover the heterogeneity among DP precursors in their potential to survive strong selection signals and suggests that the decision making in the thymus to divert immature thymocytes to the agonist selection pathway occurs early before conventional selection of DP cells. We propose that progression through the immature thymic developmental program influences the outcome of TCR engagement with early post-β-selection thymocytes triggered by strong TCR signals preferentially giving rise to innate CD8αα+ T cells in humans. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manoj Patidar ◽  
Naveen Yadav ◽  
Sarat K. Dalai

IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Ren ◽  
Kunkun Cao ◽  
Mingjun Wang

T-cell therapy, usually with ex-vivo expansion, is very promising to treat cancer. Differentiation status of infused T cells is a crucial parameter for their persistence and antitumor immunity. Key phenotypic molecules are effective and efficient to analyze differentiation status. Differentiation status is crucial for T cell exhaustion, in-vivo lifespan, antitumor immunity, and even antitumor pharmacological interventions. Strategies including cytokines, Akt, Wnt and Notch signaling, epigenetics, and metabolites have been developed to produce less differentiated T cells. Clinical trials have shown better clinical outcomes from infusion of T cells with less differentiated phenotypes. CD27+, CCR7+ and CD62L+ have been the most clinically relevant phenotypic molecules, while Tscm and Tcm the most clinically relevant subtypes. Currently, CD27+, CD62L+ and CCR7+ are recommended in the differentiation phenotype to evaluate strategies of enhancing stemness. Future studies may discover highly clinically relevant differentiation phenotypes for specific T-cell production methods or specific subtypes of cancer patients, with the advantages of precision medicine.


Sign in / Sign up

Export Citation Format

Share Document