scholarly journals A Correlation Between Differentiation Phenotypes of Infused T Cells and Anti-Cancer Immunotherapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Ren ◽  
Kunkun Cao ◽  
Mingjun Wang

T-cell therapy, usually with ex-vivo expansion, is very promising to treat cancer. Differentiation status of infused T cells is a crucial parameter for their persistence and antitumor immunity. Key phenotypic molecules are effective and efficient to analyze differentiation status. Differentiation status is crucial for T cell exhaustion, in-vivo lifespan, antitumor immunity, and even antitumor pharmacological interventions. Strategies including cytokines, Akt, Wnt and Notch signaling, epigenetics, and metabolites have been developed to produce less differentiated T cells. Clinical trials have shown better clinical outcomes from infusion of T cells with less differentiated phenotypes. CD27+, CCR7+ and CD62L+ have been the most clinically relevant phenotypic molecules, while Tscm and Tcm the most clinically relevant subtypes. Currently, CD27+, CD62L+ and CCR7+ are recommended in the differentiation phenotype to evaluate strategies of enhancing stemness. Future studies may discover highly clinically relevant differentiation phenotypes for specific T-cell production methods or specific subtypes of cancer patients, with the advantages of precision medicine.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3721-3721
Author(s):  
Yinmeng Yang ◽  
Christopher Daniel Chien ◽  
Elad Jacoby ◽  
Haiying Qin ◽  
Waleed Haso ◽  
...  

Abstract Adoptive therapy using T cells genetically engineered to express chimeric antigen receptors (CAR) has proven extremely effective against acute lymphoblastic leukemia (ALL) in clinical trials with the use of anti-CD19 CAR T cells. Most CAR T cell protocols use autologous T cells, which are then activated, transduced with the anti-CD19 CAR, and expanded ex-vivo before infusion back into the patient. This approach minimizes the risk of graft-versus-host disease (GVHD) even in allogeneic transplant recipients, due to tolerization of the donor T cell repertoire in the recipient. However, many patients have heavy disease burden and lymphopenia due to previous treatments, which makes the isolation of healthy T cells difficult. Thus, centers are exploring the potential of allogeneic T cell donors and the possibility of universal T cell donors for CAR-based therapy including the use of virus-specific T cells. In these cases, in addition to the chimeric receptor specificity, the transduced T cell population will also have reactivity against target antigens through the endogenous TCR. However, little is known about the impact of signaling of the endogenous TCR on CAR T cell activity, particularly in vivo. To test this, we used a syngeneic transplantable ALL murine model, E2aPBx, in which CD19 CAR T cells can effectively eradicate ALL. CD4 (Marilyn) and CD8 (Matahari) T cells from syngeneic HY-TCR transgenic donors specific for the minor histocompatibility male antigen, HY, were used as CAR T cell donors to control for endogenous TCR reactivity. Splenic T cells isolated from Matahari, Marilyn, or B6 mice were activated ex-vivo using anti-CD3/anti-CD28 beads, with the addition of IL2 and IL7. T cells were transduced with a retroviral vector expressing a murine CAR composed of anti-CD19 scfv/CD28/CD3ζ on days two and three. CAR T cells are evaluated in vitro by CD107a degranulation assay and INF gamma ELISA. In response to HY peptide alone or HY+CD19- line M39M, transduced CD8 HY (Matahari) cells produced IFN gamma and expressed CD107a whereas transduced CD4 HY (Marilyn) cells only produced IFN gamma. Interestingly, in response to CD19+HY- ALL, both Matahari and Marilyn expressed CD107a and produced IFN gamma indicating that CD4 T cells can acquire CD8-like lytic activity when stimulated through a CAR receptor. When CD19 CAR transduced Marilyns and Mataharis were stimulated in the presence of HY and CD19, CD8 Mataharis had an attenuated effect against CD19, suggesting that the presence of antigen activated TCR adversely affects the potency of the CAR receptor. Efficacy of the HY and polyclonal CAR T cells were next tested in-vivo in male and female B6 mice. Mice were given 1E6 E2aPBx ALL leukemia cells on day 1, and received 500 rads sub-lethal total body irradiation on day 4 as a lymphodepleting regimen. On day 5, mice were given a low (1E5) or high (5E6) dose of CAR T cells. There was a statistically significant (p=0.0177) improvement in the survival of female versus male mice after treatment with the CD4+ HY specific anti-CD19 CAR T cells, and female mice that received HY anti-CD19 CAR T cells survived longer than untreated control females (p=0.01). Remarkably, the survival of male mice that received HY anti-CD19 CAR T cells was statistically worse than untreated control males (p=0.008). This suggests that the presence of TCR antigen negatively impacts the function of CAR T cells. Furthermore, in a separate experiment using an equally mixed population of Marilyn (CD4+) and Matahari (CD8+) HY specific T cells, males has a statistically significantly (p=0.0116) worse survival compared to females after receiving 5E5 HY specific T cells. In conclusion, simultaneous stimulation through both CAR and TCR results in attenuated cytokine production and degranulation by CD8 T cells. In vivo, in the presence of the endogenous TCR antigen, both CD4 and CD8 CAR T cells are less potent at eradicating leukemia. These have implications for the development of universal donors for CAR T cell therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3086-3086
Author(s):  
Ryan Urak ◽  
ChingLam Wong ◽  
Wen-Chung Chang ◽  
Elizabeth E. Budde ◽  
Christine Brown ◽  
...  

Abstract Insufficient persistence and effector function of Chimeric Antigen Receptor (CAR) re-directed T cells in vivo has been a challenge for adoptive T cell therapy. Generation of long-lived potent CAR T cells is an increasing demand in the field. AKT activation triggered by convergent extracellular signals evokes a transcription program that enhances effector functions. However, sustained AKT activation severely impairs T cell memory and protective immunity because AKT drives differentiation of effectors, therefore diminishing T cell potential to survive and differentiate into memory cells. We now investigate whether inhibition of AKT signaling during ex vivo expansion can prevent terminal differentiation of CD19- chimeric antigen receptor (CD19 CAR) engineered T cells and increase the number of memory CD19 CAR T cells, which would enhance the antitumor activity following adoptive therapy. CD8+ T cells from healthy donors were isolated, activated with CD3/CD28 beads, and then transduced with a lentiviral vector encoding a second-generation CD19CAR containing a CD28 co-stimulatory domain and two mutations (L235E; N297Q) within the CH2 region on the IgG4-Fc spacers which enhances potency and persistence by blocking Fc receptor binding. In addition, the lentiviral construct also expresses a truncated human epidermal growth factor receptor (huEGFRt) which allows us to use as a selectable marker and a mechanism to ablate the CAR T cells if necessary. IL-2 (50U/mL) and AKT inhibitor (1uM/mL) were supplemented every other day. Transduced CD19CAR T cells without AKT inhibitor treatment were used as controls. The engineered CD19CAR T cells were expanded in vitro for 21 days before in vitro and in vivo analyses. We found that AKT inhibitor did not compromise the CD19CAR T cell proliferation and survival in vitro. There was a comparable CD19CAR T cell expansion after culturing in the presence or absence AKT inhibitor. Functionally, AKT inhibitor did not dampen the effector function of CD19CAR T cells as indicated by equivalent levels of interferon gamma production and CD107a expression upon CD19 antigen stimulation. Memory-like phenotype such as CD62L and CD28 expression on CAR T cells is associated with better antitumor activity in vivo. We therefore characterized the CD19CAR T cells after ex vivo expansion. We found that 40% of AKT-inhibited CD19CAR T cells expressed CD62L and co-expressed CD28. More importantly, no exhaustion markers such as KRLG and PD-1 were induced on the AKT inhibitor treated cells. In contrast, only 10% of control untreated CD19CAR T cells expressed CD62L and they were CD28 negative, indicating that AKT-inhibited CD19CAR T cells with higher levels of CD62L and CD28 expression may have superior anti-tumor activity following adoptive transfer. To test the potency of the AKT inhibitor treated CAR T cells, 0.5x106 CD19+ acute lymphoid leukemic cells (SupB15) engineered to express firefly luciferase were inoculated intravenously into NOD/Scid IL-2RgammaCnull (NSG) mice. Five days post tumor engraftment, 2x106 CD8+ CD19CAR T cells were intravenously injected into tumor bearing mice. Control mice received either no T cells, non-transduced T cells (Mock), or CD19CAR T cells that were not treated with AKT inhibitor during in vitro expansion. Tumor signals post T cell infusion were monitored by biophotonic imaging. Compared to the untreated CD19CAR T cells, which exhibited lower and transient anti-tumor activity, AKT inhibitor treated CD19CAR T cells completely eradicated the CD19+ tumor in all mice (Figure 1) 21 days post CD19CAR T cell infusion. In conclusion, our results demonstrate that inhibition of AKT signaling during the ex vivo priming and expansion gives rise to a CD19CAR T cell population that possesses superior antitumor activity. These findings suggest that ex vivo therapeutic modulation of AKT might be a strategy to augment antitumor immunity for adoptive CAR T cell therapy, which could easily be transitioned into the clinic with the availability of pharmaceutical grade AKT inhibitor. Disclosures Forman: Amgen: Consultancy; Mustang: Research Funding.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2870-2870 ◽  
Author(s):  
Pengcheng He ◽  
Hong Liu ◽  
Haibo Liu ◽  
Mina Luo ◽  
Hui Feng ◽  
...  

Background : CD19-targeted CAR-T therapies have shown promising efficacy in treating B-cell malignancies. However, treatment-related toxicities, such as cytokine-release syndrome (CRS) and CAR T-cell-related encephalopathy syndrome (CRES), have been one of the major obstacles limiting the use of CAR-T therapies. How to minimize occurrence and severity of toxicity while maintaining efficacy is a major focus for T-cell therapies in development. ET019003 is a next generation CD19-targeted T-cell therapy developed by Eureka Therapeutics, built on the proprietary ARTEMISTM T-cell platform. The ET019003 construct is optimized with the co-expression of an ET190L1 Antibody-TCR (Xu et al, 2018) and novel co-stimulation molecule. We are conducting a First-in-human (FIH) study of ET019003 T cells in CD19+ r/r DLBCL patients. Methods: This FIH study aims to evaluate the safety and efficacy of ET019003 T-cell therapy in CD19+ patients with r/r DLBCL. As of July 2019, six subjects were administered ET019003 T cells. These subjects were pathologically confirmed with DLBCL that is CD19+ (by immunohistochemistry), whose disease have progressed or relapsed after 2-5 lines of prior therapies. All were high-risk patients with rapid tumor progression and heavy tumor burden. Each subject had a Ki67 proliferative index over 60%, 2/6 of the subjects had a Ki67 proliferative index over 90%. Moreover, 5/6 of the subjects had extra-nodal involvement. Following a 3-day preconditioning treatment with Fludarabine (25mg/m2/day)/ Cyclophosphamide (250mg/m2/day), patients received i.v. infusions of ET019003 T cells at an initial dose of 2-3×106 cells/kg. Additional doses at 3×106 cells/kg were administered at 14 to 30-day intervals. Adverse events were monitored and assessed based on CTCAE 5.0. Clinical responses were assessed based on Lugano 2014 criteria. Results: As of July 2019, six subjects have received at least one ET019003 T-cell infusion, and four subjects have received two or more ET019003 T-cell infusions. No Grade 2 or higher CRS was observed in the six subjects. One subject developed convulsions and cognitive disturbance. This subject had lymphoma invasion in the central nervous system before ET019003 T-cell therapy. The subject was treated with glucocorticoid and the symptoms resolved within 24 hours. Other adverse events included fever (6/6, 100%), fatigue (3/6, 50%), thrombocytopenia (3/6, 50%), diarrhea (2/6, 33%), and herpes zoster (1/6, 17%). ET019003 T-cell expansion in vivo (monitored by flow cytometry and qPCR) was observed in all six subjects after first infusion. The absolute peak value of detected ET019003 T cells ranged between 26,000 - 348,240 (median 235,500) per ml of peripheral blood. Tmax (time to reach the absolute peak value) was 6 - 14 days (median 7.5 days). For the four subjects who received multiple ET019003 T-cell infusions, the absolute peak values of detected ET019003 T cells after the second infusion were significantly lower than the absolute peak values achieved after the first infusion. For the two subjects who received three or more infusions of ET019003 T cells, no significant ET019003 T-cell expansion in vivo was observed after the third infusion. All six subjects completed the evaluation of clinical responses at 1 month after ET019003 T-cell therapy. All subjects responded to ET019003 T cells and achieved either a partial remission (PR) or complete response (CR). Conclusions: Preliminary results from six CD19+ r/r DLBCL patients in a FIH study show that ET019003 T-cell therapy is safe with robust in vivo T-cell expansion. The clinical study is on-going and we are monitoring safety as well as duration of response in longer follow-up. Reference: Xu et al. Nature Cell Discovery, 2018 Disclosures Liu: Eureka Therapeutics: Employment, Equity Ownership. Chang:Eureka Therapeutics: Equity Ownership. Liu:Eureka Therapeutics: Employment, Equity Ownership.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Anna Cole ◽  
Guillermo Rangel RIvera ◽  
Aubrey Smith ◽  
Megan Wyatt ◽  
Brandon Ware ◽  
...  

BackgroundIL-21 enhances the anti-tumor capacity of adoptively transferred CD8+ T cells, while IL-2 and IL-15 impair T cell immunity by driving their expansion to a more differentiated status. Yet, these cytokines can act on many different immune cells. Given the potency of IL-21, we tested if this cytokine directly augments T cells or rather if it enhances other immune cells in the culture that indirectly improves T cell therapy.MethodsTo test this question, splenocytes from pmel-1 transgenic mice were used, as all CD8+ T cells express a transgenic TCR specific for tumor-antigen gp10025–33 overexpressed on melanoma. We then peptide activated naïve CD8+ T cells enriched or not from the spleen of pmel-1 mice and expanded them in the presence of IL-21 or IL-2 (10 ng/mL) for four days. Expanded pmel-1 from these various cultures were then restimulated with irradiated splenocytes pulsed with gp10025–33 and grown an additional seven days with IL-2 (10 ng/mL), irrespective of their initial cytokine condition. The in vitro memory phenotype, exhaustion profile, and cytokine secretion of these cultures were then assayed. Furthermore, mice bearing B16KVP melanoma tumors were infused with pmel-1 T cells expanded via these various approaches and compared for their relative capacity to engraft, persist, and regress tumor in vivo.ResultsInterestingly, we discovered that IL-21-treated T cells generated from bulk splenocytes are phenotypically and functionally distinct from IL-21-treated isolated T cells. Upon restimulation, IL-21-treated T cells from bulk splenocytes exhibited an exhausted phenotype that was like anergic IL-2-treated T cells. Moreover, few cells expressed CD62L but expressed heightened markers of suppression, including TIM3, PD-1, and EOMES. Moreover, they produced more effector molecules, including granzyme B and IFN-gamma. In vivo IL-21-treated T cells expanded from bulk splenocytes engrafted and persisted poorly, in turn mediating suboptimal regression of melanoma. Conversely, IL-21 dramatically bolstered the engraftment and antitumor activity of T cells only if they were first isolated from the spleen prior to their expansion and infusion into the animal.ConclusionsCollectively, our data shows that IL-21 may improve ACT therapy best when used directly on antitumor CD8+ T cells. Further studies will illuminate the mechanism behind this striking difference and determine whether other cell subsets reactive to IL-21 cause T cell dysfunction and/or reduced bioavailability. These findings are important for defining the best culture conditions in which to use IL-21 for ACT.AcknowledgementsWe would like to acknowledge Emory University, The Winship Cancer Institute, and the Pediatrics/Winship Flow Cytometry Core.Ethics ApprovalAll animal procedures were approved by the Institutional Animal Care and Use Committee of Emory University, protocol number 201900225.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ditte E. Jæhger ◽  
Mie L. Hübbe ◽  
Martin K. Kræmer ◽  
Gael Clergeaud ◽  
André V. Olsen ◽  
...  

AbstractAdoptive T-cell transfer (ACT) offers a curative therapeutic option for subsets of melanoma and hematological cancer patients. To increase response rates and broaden the applicability of ACT, it is necessary to improve the post-infusion performance of the transferred T cells. The design of improved treatment strategies includes transfer of cells with a less differentiated phenotype. Such T cell subsets have high proliferative potential but require stimulatory signals in vivo to differentiate into tumor-reactive effector T cells. Thus, combination strategies are needed to support the therapeutic implementation of less differentiated T cells. Here we show that systemic delivery of tumor-associated antigens (TAAs) facilitates in vivo priming and expansion of previously non-activated T cells and enhance the cytotoxicity of activated T cells. To achieve this in vivo priming, we use flexible delivery vehicles of TAAs and a TLR7/8 agonist. Contrasting subcutaneous delivery systems, these vehicles accumulate TAAs in the spleen, thereby achieving close proximity to both cross-presenting dendritic cells and transferred T cells, resulting in robust T-cell expansion and anti-tumor reactivity. This TAA delivery platform offers a strategy to safely potentiate the post-infusion performance of T cells using low doses of antigen and TLR7/8 agonist, and thereby enhance the effect of ACT.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


2020 ◽  
Author(s):  
JL Reading ◽  
VD Roobrouck ◽  
CM Hull ◽  
PD Becker ◽  
J Beyens ◽  
...  

AbstractRecent clinical experience has demonstrated that adoptive regulatory T cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote regulatory T cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a GMP compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is linked with a distinct Treg cell-intrinsic transcriptional program, characterized by diminished levels of core exhaustion (BATF, ID2, PRDM1, LAYN, DUSP1), and quiescence (TOB1, TSC22D3) related genes, coupled to elevated expression of cell-cycle and proliferation loci (MKI67, CDK1, AURKA, AURKB). In addition, MulTreg display a unique gut homing (CCR7lo β7hi) phenotype and importantly, are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or Th1-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 TSDR demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno graft vs host disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


Sign in / Sign up

Export Citation Format

Share Document