Activity of the Telomerase Inhibitor GRN163L (Imetelstat) on Acute Myeloblastic Leukemia Blasts Is Enhanced By DNA Methyltransferase Inhibitors Irrespective of TERT Promoter Methylation Status

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1267-1267
Author(s):  
Caroline R Cantilena ◽  
Xin Zhao ◽  
Sachiko Kajigaya ◽  
Neil Dunavin ◽  
Xin Tian ◽  
...  

Abstract Introduction. The high telomerase activity in leukemia cells protects them from proliferation arrest, senescence, and apoptosis and may be driven by mutation or epigenetic alteration in the telomerase promoter. However, the mechanism of telomerase regulation and potential therapeutic application of telomerase inhibition in leukemia are not fully understood. We evaluated epigenetic methylation patterns in the telomerase promoter region in myeloid cell lines and primary acute myeloid leukemia (AML) blasts. These epigenetic patterns may serve as a biomarker for sensitivity to DNA methyltransferase (DNMT) inhibitors and have prognostic significance. We also studied whether the telomerase inhibitor GRN163L (imetelstat)can favorably combine with the DNMT inhibitor 5-Azacytidine (5-Aza) to target poor prognosis leukemias. Methods. We developed a pyrosequencing-based methylation assay to screen methylation profiles of the proximal promoter and partial exon 1 of the human telomerase reverse transcriptase (hTERT pro/Ex1) region in primary leukemic cells and various cell lines.We used a chemosensitivity assay to determine specific killing of primary leukemia and cell lines by imetelstat. An inert mismatched oligonucleotide (Geron Corporation, Menlo Park, CA, USA) was used to control for specific inhibition of the telomerase active site. Cells were cultured for 48 hours with either active imetelstat or the inert control at varying concentrations, stained with annexin-V and propidium iodide, and then analyzed by flow cytometry to measure cell viability, apoptosis, and necrosis. Results. The hTERT pro/Ex1 region was highly methylated in cell lines, relative to de novo primary leukemic cells. Primary leukemic cells showed significantly different methylation profiles and hypermethylation status correlated to poor survival of AML patients. Three commercially available leukemia cell lines (K562, Ramos, THP-1), two primary leukemia-derived cell lines (AML1, CML1), and CD34+ blasts isolated from primary leukemia in six different AML patients with varying degrees of hTERT pro/Ex1 region methylation were tested. Imetelstat showed dose dependent cytotoxicity to both myeloid leukemia cell lines and primary leukemic blasts. Cell toxicity was telomerase specific since the inert control had no or minimal toxicity at the half inhibitory concentration (IC50) of imetelstat between 10-40 µM. Higher methylation status of the hTERT pro/Ex1 region was significantly associated with increased resistance to imetelstat in leukemia cell lines (Figure 1A). However, no correlation was found in primary leukemic blasts. Pretreatment of leukemia cell lines with 5-Aza for 24 hours prior to imetelstat exposure was associated with a decrease in viability from 0.78±0.01 to 0.54±0.01 at a concentration of 10µM of imetelstat (Figure 1B). 5-Aza alone had no effect on the leukemic cell lines' viability. Conclusion. High risk primary leukemias are susceptible to killing by the telomerase inhibitor irrespective of the degree of methylation of the hTERT pro/Ex1 region. Furthermore, demethylating agents can enhance the activity of the telomerase inhibitor, imetelstat. These findings suggest that combination therapy of imetelstat and DNMT inhibitors may have synergistic anti-leukemic efficacy in high risk AML patients. Disclosures Strickland: Amgen: Other: Advisory Board Particpation; Boehringer-Ingelheim: Other: Advisory Board Particpation; Daiichi-Sankyo: Other: Advisory Board Particpation; Sunesis Pharmaceuticals: Other: Steering Committee and Advisory Board Participation; Alexion Pharmaceuticals: Other: Advisory Board Particpation. Rezvani:Pharmacyclics: Research Funding. Townsley:Novartis: Research Funding; GSK: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1568-1568
Author(s):  
Kozo Nagai ◽  
Lihong Hou ◽  
Li Li ◽  
Bao Nguyen ◽  
Courtney M Shirley ◽  
...  

Abstract A number of selective FLT3 tyrosine kinase inhibitors (TKIs) have been tested for treatment of FLT3-ITD+ AML. However, monotherapy with FLT3 TKIs alone has achieved only transient and limited clinical responses due to several resistance mechanisms. Arsenic trioxide (ATO) has demonstrated significant efficacy in treating acute promyelocytic leukemia (APL). ATO has also shown some activity in treating non-APL myeloid leukemias. Recent studies have demonstrated that ATO can affect the degradation of oncogenic mutant proteins including mutant p53 and NPM through the ubiquitin-proteasome pathway (UPP). Here we investigated the feasibility of combining FLT3 TKIs with ATO in the treatment of FLT3-ITD+leukemia. Anti-leukemic effects against FLT3-ITD+ patient AML samples and leukemia cell lines (Molm14, MV4;11) by FLT3 TKIs (Sorafenib, quizartinib), ATO and the combination were examined by MTT, apoptosis, cell viability and colony forming assays. Our data revealed that the combination showed synergistic growth inhibition of the FLT3-ITD+ cell lines Molm14 and MV4;11, with combinatorial index (CI) values at ED50 below 1.0 for both cell lines (CI values were 0.46 and 0.56 for ATO + sorafenib, 0.65 and 0.57 for ATO + quizartinib in Molm14 and MV4;11 cells, respectively). In contrast, there was no synergy observed for the combination in treating leukemia cell lines that do not express mutant FLT3. Synergistic effects for the combination in inducing apoptosis and inhibiting colony formation were also observed for the FLT3-ITD+ cell lines. Furthermore, when the combination was used to treat primary FLT3-ITD+ patient samples, there was also significant reduction of viability and clonogenicity. In contrast, normal BM MNCs showed very limited responses to the combination. Western blot (WB) analysis of Molm14 and FLT3-ITD+ patient samples revealed the combination of ATO and sorefenib potently reduced phosphorylation of FLT3 and its downstream targets (STAT5, MAPK, and AKT). In vivoexperiments using the combination to treat NSG mice engrafted with Molm14 cells demonstrated a significant reduction in the level of leukemic cells. We further investigated the mechanism by which ATO contributes to an anti-leukemic effect on FLT3-ITD+ cells. Morphologic and flow cytometric analysis showed that ATO promoted the differentiation of Molm14 cells. The expression of C/EBPα and PU.1, two key regulators for myeloid differentiation, was increased in ATO-treated Molm14 cells at both the mRNA and protein levels. These data suggest ATO is capable of inducing the differentiation of leukemic cells. We also found that, in FLT3-ITD+ cells, ATO decreased expression of FLT3 protein. This could result from reduced FLT3 production and/or increased protein degradation. Further quantitative PCR analysis revealed ATO decreased expression of FLT3 and its upstream regulators HoxA9 and meis1. Co-immunoprecipitation assay showed that ATO facilitated poly-Ubiquitination and degradation of FLT3 in a dose- and time-dependent fashion. These results indicate that ATO exerts its anti-leukemic effects in FLT3-ITD+AML cell lines and primary samples at least partly through reducing the level of FLT3 protein. These studies together demonstrate that ATO has a unique activity towards FLT3-ITD+ leukemia cells. Based on these findings, ATO is a potential candidate to work in combination with FLT3 TKIs to improve the outcome of FLT3-ITD+ AML patients. Disclosures Levis: Millennium: Consultancy, Research Funding; Daiichi-Sankyo: Consultancy, Honoraria; Astellas: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-45
Author(s):  
Xiaotian Zhang ◽  
Xue Qing David Wang ◽  
Haley Gore ◽  
Pamela Himadewi ◽  
Fan Feng ◽  
...  

Changes in 3D chromatin organization like enhancer hijacking are believed to the driver for disease development like leukemia. Here we performed high-resolution HiC assays on primary acute myeloid leukemia (AML) samples and cell lines to dissect the abnormal 3D chromatin organization in AML. Our data set covers 5 AML samples and 3 AML cell lines. This dataset includes the common genetic abnormalities in AML: MLL-rearrangement, NPM1 mutation, RUNX1 mutation, and IDH1/TET2 mutations. We have recently generated high-resolution map for normal human hematopoietic stem cells (HSC) (Zhang et al. Mole Cell. 2020). In comparison with the HSC 3D chromatin organization, we found TADs and loops are very stable in both primary leukemia samples and cell lines. Less than 5% of all TADs in HSC fuse in AML, mimicking the enhancer hijacking scenario. These fusion events do not cause the gene expression changes of genes in the fused TAD. Interestingly, in TET2 or IDH1 mutated AML blast, two-fold more TAD fusion events occurred in primary AML blast in comparison with RUNX1 and MLL-r leukemia, with a loss in the CTCF sites on the TAD fusion break point. We previously found in HSC, the Polycomb marked DNA methylation Canyons (DMC) form multi-Mb size long-range interactions. DMC interactions in general decrease in primary AMLs. AMLs with IDH1 or TET2 mutations shows the biggest reduction in DMC interactions. Hypermethylation in the DMCs is observed in the AML samples with IDH1/2 or TET2 mutations, suggesting DNA methylation level in DMCs controls DMC 3D interactions directly. In leukemia cell lines, the DMC interactions almost disappear, with further hypermethylation in DMCs. Compared with normal HSC, we found in AML, the AML-specific H3K27ac marked regions form leukemia specific loops and transcription stripes in both cell lines and primary samples. Particularly in MLL-r primary leukemias, we found broad H3K27ac covered, hyperacetylated domains (10kb to 200kb). 22 such hyperacetylated domains were identified and associated with leukemogenic genes such as SATB1, ZEB2 and HOXA. All these domains formed distinct 3D micro TAD in the MLL-r primary leukemia in comparison with the HSPC, and CTCFs are not located at the border of these domains. Taken together, suggest active leukemia specific transcription created new 3D genomic interactions which is independent of cohesion-CTCF mediated loop extrusion. Interestingly, in HOXA cluster, we found a geneless DMC 1.3MB upstream of HOXA switched from Polycomb binding site to active enhancer site in the leukemia cells. By applying CRISPR/Cas9 editing, we found this canyon is essential for survival of HOXA high expressing leukemia cell lines like OCI-AML3 and MV4:11. In summary, we found the 3D chromatin organization in human leukemia significantly alters in two opposite way 1. The significant loss of Polycomb marked DMC interactions caused by the DNA hypermethylation and 2. The leukemic specific hyperacetylated domains form its own distinct micro TAD and stripes in the 3D chromatin organization. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2127-2127
Author(s):  
Shao-qing Kuang ◽  
Weigang Tong ◽  
Hui Yang ◽  
Mathew K. Lee ◽  
Zhi-Hong Fang ◽  
...  

Abstract Aberrant DNA methylation is a common molecular feature of both pediatric and adult ALL. Specific methylation patterns predict for poor prognosis (Shen et al Blood 2004), and reactivation of epigenetically inactivated molecular pathways results in induction of leukemia cell death (Kuang et al. Oncogene 2007). Until now most studies of methylation in ALL have been based on arbitrary gene selection methods. To overcome this limitation and to study hundreds of promoter CpG islands simultaneously, we have developed a method that combines MCA (Methylated CpG Island Amplification) with either RDA (Representational Difference Analysis) or the Agilent Promoter Microarray platform. With these methods differentially methylated DNA treated with bisulfite is generated after mixing tester DNA (in our case DNA from de novo refractory Ph negative and MLL negative ALL patients) with driver DNA (normal B cell controls) and using specific restriction enzymes and several rounds of PCR. DNA fragments thus generated are either cloned (RDA) or labeled and spotted on the Agilent Array. Using this technology, that can potentially interrogate up to 17K promoters, we have identified 932 promoters targets of aberrant DNA methylation in poor risk ALL from patients that cannot be currently identified by standard molecular methods (Ph and MLL negative). The genes associated with these promoters are distributed through the human genome but an overrepresentation of methylated promoters located in chromosomes 3, 9, 11 and 19 was detected. Using molecular pathway clustering analysis, 404 of these genes are grouped together in 29 specific functional pathways. We have validated the methylation of 31 of these 923 genes by bisulfite pyrosequencing. Of these, 27 (87%) were confirmed to be hypermethylated in 23 human leukemia cell lines but not in normal controls (N=15). Methylation status analysis of these 27 genes allowed for the segregation of T cell versus B cell leukemia cell lines. Fifteen of these genes (GIPC2, RSPO1, MAGI1, CAST1, ADCY5, HSPA4L, OCLN, EFNA5, MSX2, GFPT2, GNA14, SALL1, MYO5B, ZNF382 and MN1) were also frequently hypermethylated in primary ALL samples. Expression analysis of 6 of these genes (GIPC2, MAGI1, ADCY5, HSPA4L, OCLN and GNA14) in leukemia cell lines further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with 5′-aza-2′-deoxycytidine and trichostatin A resulted in gene re-expression, further confirming the role of DNA methylation in their silencing. In summary, we have identified in excess of 900 targets of aberrant DNA methylation in ALL. The study of the epigenetically suppressed pathways represented by these genes should allow us to further understand the molecular pathogenesis of ALL and develop new prognostic biomarkers for patients with Ph and MLL negative disease.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4044-4044
Author(s):  
Blake S Moses ◽  
Jennifer Fox ◽  
Xiaochun Chen ◽  
Samantha McCullough ◽  
Sang Ngoc Tran ◽  
...  

Abstract Antimalarial artemisinins have broad antineoplastic activity in vitro, are well tolerated and inexpensive, and can be parenterally or orally administered in humans. Artemisinin-derived trioxane diphenylphosphate dimer 838 (ART838; a potent artemisinin-derivative) inhibited acute leukemia growth in vivo and in vitro, at doses where normal human CD34+ hematopoietic stem-progenitor cell clonogenicity was essentially unaffected (Fox et al, Oncotarget 2016, PMID: 26771236). In our focused drug combination screen for drugs that synergize with ART838, the only BCL2 inhibitors in the screen library of 111 emerging antineoplastic compounds, navitoclax (ABT737) and venetoclax (ABT199; FDA-approved), were identified as 2 of the top 3 candidates. Synergies between ART838 and BCL2 inhibitors were validated in multiple acute leukemia cell lines and primary cases. This ART838-BCL2 inhibitor synergy may be due to reduced levels of MCL1 protein that we and others have observed in multiple acute leukemia cell lines and primary cases treated with artemisinins (Budhraja et al, Clin Cancer Res 2017, PMID: 28974549). Treatment of acute leukemia xenografts with the ART838 plus ABT199 combination reduced leukemia growth rates and prolonged survivals, compared to vehicle or either ART838 or ABT199 alone. To add to the efficacy of this ART838 plus ABT199 treatment regimen, we sought to rationally add a third low-toxicity active antileukemic agent. Sorafenib (SOR; FDA-approved) inhibits multiple kinases which may mediate its antileukemic activity, with the importance of the targets varying from case to case; e.g. FLT3 is an important target in many AMLs. In addition, several reports have found that SOR reduces MCL1 protein stability and translation through inhibition of the ERK and PI3K pathways (Wang et al, Clin Cancer Res 2016, PMID: 26459180; Huber et al, Leukemia 2011, PMID: 21293487). In all acute leukemia cell lines tested, we observed large reductions in MCL1 protein levels with SOR treatment, which may further rationalize the addition of SOR to our ART838 plus ABT199 antileukemic regimen. We had previously observed strong in vitro synergy between ART838 and SOR (PMID: 26771236). Treatment of acute leukemia xenografts with the ART838 plus SOR combination reduced leukemia xenograft growth rates and prolonged survivals, compared to single drugs. Mice bearing luciferase-labelled acute leukemia xenografts were treated (PO daily x5) with single drug or 2-drug or 3-drug combinations of ART838, ABT199, and SOR, each at their individual maximally tolerated doses. Treatment with this 3-drug combination caused rapid regression of luciferase-labelled MV4;11 AML xenografts (Fig 1A). The 5-day treatment cycles were repeated every other week, and mice receiving this 3-drug combination survived >4 times longer than vehicle-treated mice (Fig 1B). Mouse body weights were stable during treatment. Although myelosuppression is the human clinical dose-limiting toxicity of each of these 3 drugs, mouse blood cell counts during 3-drug combination treatment were in the normal range. Treatment of a luciferase-labelled primary AML leukemia xenograft with this 3-drug combination reduced leukemia growth more than the single drugs or 2-drug combinations (Fig 1C). Assessment of efficacy and pharmacokinetics-pharmacodynamics against diverse acute leukemia xenografts will test this combination of ART838, ABT199 plus SOR as a rational low-toxicity drug triad for treatment of acute leukemias and potentially other cancers. Disclosures Fox: Intrexon Corporation: Employment. Tyner:Genentech: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Array: Research Funding; Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Aptose: Research Funding. Civin:ConverGene LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GPB Scientific LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 3DBioWorks Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; BD (Becton Dickinson): Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2187-2187
Author(s):  
Xiaomei Yan ◽  
Yoshihiro Hayashi ◽  
Xinghui Zhao ◽  
Aili Chen ◽  
Yue Zhang ◽  
...  

Abstract Transcription factors RUNX1/CBFβ play critical roles in hematopoiesis. Both of them are frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. We have previously shown that MLL, RUNX1, and CBFβ interact and form a regulatory complex to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFβ activity remains unknown. To determine the impact of MLL fusion protein on RUNX1/CBFβ, we introduced either MLL, MLL-BP (longer N-terminal Flag-tagged MLL construct which contains CXXC domain; 1-1406), or MLL-fusions together with RUNX1, CBFβ, or both RUNX1 and CBFβ into 293T cells. MLL-BP and MLL fusions significantly decreased RUNX1 levels compared with controls (empty vector and MLL). CBFβ protein was mildly decreased by MLL-BP and MLL-fusions when expressed alone. However, when CBFβ was co-expressed with RUNX1, it was significantly decreased compared with controls. The expression levels of RUNX1 and CBFβ proteins in LSK cells from Mll-Af9 knock-in mice were significantly lower than those from wild-type (WT) mice. To confirm these findings in human acute myeloid leukemia (AML), we measured the expression of RUNX1 and CBFβ at both mRNA and protein levels in various leukemia cell lines. The expression levels of RUNX1 and CBFβ proteins were significantly decreased in AML cells with MLL fusion and MLL partial tandem duplication (MLL-PTD) compared with those in AML cells without MLL aberrations. MLL fusions still have CXXC domain. In MLL-PTD, the CXXC domain is duplicated. Our data showed that RUNX1 protein is not only down-regulated by MLL fusion proteins, but also by MLL-BP. Thus, to determine which region is involved in the down-regulation of RUNX1, we introduced a series of MLL deletion mutants into 293T cells and measured RUNX1 protein expression. MLL deletion mutants without CXXC domain had no effect on RUNX1 stability. The construct which contains point mutations in CXXC domain also lacked the ability to reduce RUNX1 expression. Furthermore, overexpression of only CXXC domain and flanking regions could down-regulate RUNX1 protein expression. These results suggest that MLL fusion proteins and the N-terminal MLL portion of MLL fusions down-regulate RUNX1 and CBFβ protein expression via the MLL CXXC domain and flanking regions. To understand the impact of RUNX1/CBFβ down-regulation on hematopoietic stem and progenitor cells (HSPCs), we generated RUNX1+/–/CBFβ+/– mice as a hypomorph model. The percentage of bone marrow (BM) LSK cells from RUNX1+/–/CBFβ+/– mice was significantly increased compared with that from WT mice. Using BM cells from these mice, we performed in vitro CFU assay and in vivo bone marrow transplantation (BMT) assay. BM cells from RUNX1+/–/CBFβ+/– mice provided more colonies in CFU assay compared with those from WT mice. To determine whether restoration of RUNX1 could repress the MLL mediated leukemogenesis, we retrovirally overexpressed WT RUNX1 in BM cells from Mll-Af9 knock-in mice. Using transduced BM cells, we performed in vitro CFU assay and in vivo BMT assay. RUNX1 overexpressed Mll-Af9 (Mll-Af9/RUNX1) cells underwent terminal differentiation after 2 times replating, while control vector transduced Mll-Af9 (Mll-Af9/Control) cells could still be replated more than 4 times. All the recipient mice transplanted with Mll-Af9/Control cells developed AML. In contrast, all the recipient mice transplanted with Mll-Af9/RUNX1 never develop AML. Furthermore, when we treated MLL leukemia cell lines with DOT1L inhibitor (EPZ-5676), RUNX1 protein levels in these MLL leukemia cell lines were significantly increased 48 hours after the treatment in comparing with controls treated with DMSO. However, there was no significant mRNA expression level change of RUNX1within 48 hours. Future studies are needed to fully understand the mechanism of whether this increasing RUNX1 protein level by DOT1L inhibitor is through blocking CXXC domain and flanking regions mediated degradation. In conclusion, MLL aberrations down-regulate RUNX1/CBFβ via their CXXC domain and flanking regions. Down-regulation of RUNX1/CBFβ plays critical role for MLL mediated leukemia development. Targeting RUNX1/CBFβ levels allows us to test novel therapies for MLL leukemias. Disclosures Mulloy: Celgene: Research Funding; Seattle Genetics: Research Funding; Amgen: Research Funding; NovImmune: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3300-3300
Author(s):  
Seshagiri Duvvuri ◽  
Vivian Ruvolo ◽  
Duncan H. Mak ◽  
Kensuke Kojima ◽  
Marina Konopleva ◽  
...  

Abstract Abstract 3300 Background: Nutlin-3a is a small molecule inhibitor of MDM2 and has been shown to induce apoptosis and cell cycle arrest in various cancer models in a p53 dependent manner. Autophagy is a programmed cell death that can occur concurrently with apoptosis or in its absence. There is significant debate whether autophagy is a protective mechanism or a bona fide mechanism of cell death. While autophagy can function as tumor cell defense mechanism against cellular stress induced death, mutation/loss of alleles of certain genes regulating autophagy have been associated with development of cancer (e.g. Beclin-1 in breast cancer [Nature, 1999, 402: 672–676]). Multiple proteins involved in autophagy are transcriptional targets of p53 but Nutlin-3a has not been evaluated for its role in inducing autophagy. Here we present data suggesting that low dose Nutlin-3a induces autophagy in addition to apoptosis in leukemia cell lines in a p53 dependent manner. Methods and results: OCI-AML-3 cells (p53-WT) treated with Nutlin-3a (2.5 and 5.0μM for 48, 72 and 96 hrs) were stained with mono-dansyl-cadaverine (MDC), a dye that accumulates in acidic autophagic vacuoles. OCI-AML-3 cells showed increasing staining with MDC in a dose and time dependent fashion by both flow cytometry (54%, 57% and 51% MDC positive after treatment with Nutlin-3a 5.0μM for 48, 72 and 96 hrs) and by confocal microscopy. Nutlin-3a treated cells also were positive for Annexin-V (flow cytometry 22%, 26% and 36% at 48, 72 and 96 hrs time points), and some of the cells were double-positive for Annexin-V and MDC (9.2%, 5% and 7% at 48, 72 and 96 hrs) suggesting that both apoptosis and autophagy can occur simultaneously. Autophagy induction was confirmed by Transmission Electron Microscopy (TEM). Large, multiple autophagic vacuoles were observed in OCI-AML-3 cells treated with Nutlin-3a. OCI-AML-3 cells with stable p53 knockdown by shRNA or HL-60 cells (p53-null) did not show increased MDC staining by flow cytometry (both cell lines) or autophagic vacuoles by TEM (HL-60) after similar treatment. Western blot analysis showed increases in LC3-II and in conjugation of Atg5/12, early and late autophagy markers respectively, in OCI-AML-3 cells after treatment with Nutlin-3a. Increased expression of the autophagy markers (LC3-II and Atg 5/12 conjugate) were also seen by Western blot analysis in the ALL cell lines REH and NALM-6 (both p53-WT) after treatment with Nutlin-3a. Western blot and/or RT-PCR analysis showed upregulation of other p53 related proteins involved in autophagy e.g. DRAM, AMPK-β, LKB1, pLKB1 in OCI-AML-3 cells treated with Nutlin-3a. As mTOR/Akt pathway inhibits autophagy, analysis of mTOR targets showed downregulation of the total and phospho-ribosomal-S6-protein levels, whereas there was no change in total or phospho-4-EBP-1 levels. Knockdown of Beclin-1 (ATG6), one of the proteins required for initiation of the formation of autophagic vacuoles, caused reduction in autophagic vacuoles (MDC staining by confocal microscopy) in OCI-AML-3 and REH cells without affecting apoptosis induction (Annexin V by flow cytometry). Pharmacologic inhibition of late autophagy by Bafilomycin (10nM for 2 hours) reduced MDC staining in OCI-AML-3 cells treated with Nutlin-3a for 48 hrs (32% without and 9% with Bafilomycin) while having limited inhibition of apoptosis (Annexin V positive 42% without and 33% with Bafilomycin). Conclusion: Nutlin-3a induces autophagy in leukemia cells by a p53 dependent manner. We also demonstrate that autophagy could go hand-in-hand with apoptosis and in a fraction of cells both processes may occur concomitantly. Inhibition of autophagy does not necessarily enhance apoptosis. Disclosures: Andreeff: Roche: Research Funding. Borthakur:ASCO: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3513-3513 ◽  
Author(s):  
James M Bogenberger ◽  
Chang-Xin Shi ◽  
Irma Gonzales ◽  
Rodger E. Tiedemann ◽  
Pierre Noel ◽  
...  

Abstract Abstract 3513 To identify targets for rational combination therapies with 5-Azacytidine (5-Aza) in myeloid malignancies, we utilized high-throughput RNA-interference (RNAi) viability screening. A siRNA library targeting 572 kinases and a custom collection of 289 putative cancer targets, including cell cycle and apoptosis regulatory genes, were screened alone and in combination with 5-Aza in TF-1 and ML-2 myeloid leukemia cell lines to identify synergistic interactions in reducing cell viability. Of the 572 kinases that were individually silenced, less than 1% significantly increased sensitivity to 5-Aza. The kinase library was also screened in combination with 5-Aza in a third myeloid cell line, THP-1, confirming that few kinases sensitize to 5-Aza when inhibited. While few kinases sensitized to 5-Aza, the anti-apoptotic Bcl-2 family of genes emerged as potent sensitizers to 5-Aza from RNAi screens. Therefore, silencing by siRNA of BCL-XL, BCL-2, BCL-W, MCL-1 and BFL-1 was evaluated in combination with 5-Aza treatment in an expanded panel of myeloid cell lines including TF-1, HEL, THP-1, ML-2 and MDS-L. BCL-XL validated as a vulnerability and potent sensitizer to 5-Aza in erythroid leukemia cell lines TF-1 and HEL, whereas MCL-1 was a strong vulnerability in the monocytic leukemia cell line THP-1 and also a moderate sensitizer to 5-Aza in ML-2, THP-1, TF-1 and HEL. Published proteomics data from our group indicate that M6 and M7 leukemias exhibit higher levels of BCL-XL, while additional unpublished data suggest elevated levels of MCL-1 in M4 and M5 leukemias, supporting our functional observations. Additionally, data from the public database Oncomine suggest that BCL-XL expression is elevated in M6 and M7 leukemias while MCL-1 shows a trend towards elevation in M4 and M5 leukemias. Based on RNAi screening results, siRNA validation experiments and proteomic/mRNA expression data, we evaluated the BCL-2/BCL-XL/BCL-W inhibitor ABT-737 in combination with 5-Aza. ABT-737 resulted in dose-dependent sensitization to 5-Aza in all AML-derived cell lines examined (including M7, M6, M5, M4 and M2 FAB subtypes) and in the MDS cell line MDS-L; however, no sensitization was observed in the CML cell line K562. In extensive ex vivo experiments with 17 primary specimens, potent synergy between 5-Aza and ABT-737 was observed in AML, MDS and MPN samples, but not in most CML samples examined. Calculations with CalcuSyn software demonstrate synergy, with combination index values as low as 0.2, between 5-Aza and ABT-737 both ex vivo and in vitro. The combination of 5-Aza with ABT-737 resulted in substantial induction of apoptosis, measured by the induction of cleaved caspase 3 in TF-1 and HL-60 cells, as compared to either compound alone. Interestingly, although siRNA silencing of MCL-1 in combination with 5-Aza was potent across several cell lines, and silencing of BCL-XL preferentially in an erythroid differentiation background, ABT-737 with 5-Aza sensitized across a variety of cell lines and all myeloid primary specimens ex vivo. We suggest that inhibition of anti-apoptotic Bcl-2 family members is a most promising rational combination strategy with 5-Aza for the treatment of leukemias. Our results also highlight the potential utility of more specific anti-apoptotic Bcl-2 family inhibitors in the lineage-specific treatment of myeloid malignancies. Disclosures: Off Label Use: AraC in AML. Experimental Agent MK1775. Mesa:Incyte: Research Funding; Lilly: Research Funding; SBio: Research Funding; Astra Zeneca: Research Funding; NS Pharma: Research Funding; Celgene: Research Funding.


2020 ◽  
Vol 21 (12) ◽  
pp. 4210
Author(s):  
Maura Calvani ◽  
Annalisa Dabraio ◽  
Gennaro Bruno ◽  
Veronica De Gregorio ◽  
Marcella Coronnello ◽  
...  

β-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new target and β3-AR blockade as a potential approach in myeloid leukemias.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3800-3800 ◽  
Author(s):  
Guillermo Garcia-Manero ◽  
Hui Yang ◽  
Zhihong Fang ◽  
Courtney DiNardo ◽  
Elias Jabbour ◽  
...  

Abstract Inosine 5'- monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme that catalyzes de novo synthesis of the guanine nucleotide and is overexpressed in both hematologic and solid tumors. FF-10501-01 is a potent new competitive IMPDH inhibitor. We investigated the anti-leukemia effect of FF-10501-01 in AML cell lines and in a Phase 1 clinical study in advanced AML and MDS, including HMA failures. Thirteen leukemia cell lines were studied, including 5 parental AML cell lines and their HMA-resistant derivatives (MOLM13, SKM1, HL60, TF1, and U937), and 3 other AML cell lines (KG1, HEL, and OCI-AML3). Cell proliferation was determined using trypan blue analysis. Flow cytometry was performed to detect drug-induced apoptosis and cell cycle analysis. High-performance liquid chromatography (HPLC) was performed to detect the intracellular concentrations of guanine nucleotides. Mycophenolic acid-treated cells were used as positive control. Effect of guanosine supplement on FF-10501-01 treatment was evaluated. Within 72 hours of treatment, FF-10501-01 inhibited proliferation of all 13 AML cell lines. The IC50 of FF-10501-01 ranged between 4.3 and 144.5 µM. MOLM13 was the most sensitive leukemia cell line, whereas the decitabine-resistant TF1 cell line was the most resistant. FF-10501-01-induced apoptosis was observed in all cell lines. Increased numbers of cells in G1 phase and decreased numbers in S phase were observed in MOLM13, SKM1 and TF1 cell lines treated with <100 µM FF-10501-01. Decreased intracellular concentrations of guanine nucleotides were observed in MOLM13 and SKM1 cell lines treated with 3 to 30 µM of FF-10501-01 for 24 hours. Proliferation was partially rescued after 72 hours of treatment with 3 µM guanosine and FF-10501-01 in MOLM-13, HL60 cells and their HMA-resistant derivatives. No treatment synergy was observed with the combination of FF-10501-01 with HMAs in MOLM-14 and HL-60 or their HMA-resistant cell lines. In summary, FF-10501-01 produced potent anti-proliferative and apoptotic effects on AML cell lines through inhibition of de novo guanine nucleotide synthesis. In view of these pre-clinical findings, we performed a standard 3+3 dose-escalation Phase 1 trial to access the safety and clinical activity of FF-10501-01 in patients with advanced AML, MDS and chronic myelomonocytic leukemia (CMML). Eligibility criteria: age ³ 18 years, high risk MDS/CMML, AML with documented PD following previous therapy, AML ≥ 60 years of age and not a candidate for other therapy, adequate renal and hepatic function, and no known history of significant cardiac disease. Sixteen patients (12 AML, 4 MDS) have been enrolled in 5 dose cohorts (50 - 400 mg/m2 PO BID) for 14 days on/14 days off each 28-day cycle, including 8 M and 8 F. Median (range) values: age 75.3 yrs (59.1 - 88.6); bone marrow blasts for AML patients 40.5% (12 - 71), for MDS patients 10% (6 - 13), or 30% overall (6 - 71); and prior treatment regimens 2.5 (1 - 6). All patients relapsed from, or progressed on, prior HMAs. Mutations in FLT3, NPM1, GATA2, TET2, ASXL1, DNMT3A and/or MDM2 were present in 4/16 (25%) patients. The median number of FF-10501-01 cycles received to date is 1.5 (range 1 - 10). No DLTs or drug-related serious adverse events (AEs) have been observed and FF-10501-01 has been very well tolerated through 5 - 10 cycles. The most frequent drug-related AEs have been Gr 1-2 nausea, diarrhea and fatigue. Drug-related Gr 4 prolonged thrombocytopenia and Gr 4 prolonged neutropenia were reported in one patient at 200 mg/m2 BID. Two partial responses (PRs) have been achieved in 1 patient each at 50 and 100 mg/m2 BID after 3 cycles, 7 (50%) patients demonstrated long-term stable disease over 2 - 10 cycles, and 4 patients have remained on study drug through 5 - 10 cycles and are still ongoing. Updated safety and efficacy data, including PK/PD, will be presented at the meeting. FF-10501-01 is a promising new agent for the treatment of advanced AML and MDS. Preclinical activity was seen in multiple leukemia cell lines. In a Phase 1 trial, clinical activity with PRs, prolonged disease stabilization and a highly tolerable safety profile were observed. The Phase 2 expansion phase will be initiated soon. Disclosures DiNardo: Novartis: Research Funding. Pemmaraju:Stemline: Research Funding; Incyte: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; LFB: Consultancy, Honoraria. Smith:Westat Corporation: Employment. Iwamura:FUJIFILM Corporation: Employment. Gipson:Strategia Therapeutics, Inc.: Employment. Rosner:Strategia Therapeutic, Inc.: Employment. Madden:Strategia Therapeutics, Inc.: Employment. Myers:Strategia Therapeutics, Inc.: Employment. Paradiso:Strategia Therapeutics, Inc.: Employment.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Quentin Fovez ◽  
Raeeka Khamari ◽  
Anne Trinh ◽  
William Laine ◽  
Bruno Quesnel ◽  
...  

Introduction Acute myeloid leukemias are a group of malignant hemopathies characterized by a poor prognosis for survival. The discovery of oncogenic mutations in the FLT3 gene (eq FLT3-ITD) has led to the development of new tyrosine kinase inhibitors such as quizartinib. But complete remissions of patients remains difficult because these new TKIs are not able to completely eradicate all leukemia cells. Residual leukemia cells persist during treatment with quizartinib and lead to the rapid emergence of drug-resistant leukemia. Since mitochondrial oxidative metabolism supports the survival of leukemia cells after exposure to several anticancer drugs, we characterized the metabolism of leukemia cells that persisted within quizartinib treatment and developed metabolic strategies to eradicate them. Results First, we evaluated glycolysis activity in FLT3-ITD leukemia cell lines (MOLM13 / MOLM14 / MV4-11) under quizartinib treatment (5-10nM). Quizartinib reduced extracellular acidification rate ECAR, but this glycolytic activity is not fully inhibited (50% of untreated condition). These results obtained using the XFe24 Seahorse were in agreement with the metabolomic analysis carried out in a medium containing isotopic U-13C6 glucose. Next we evaluated mitochondrial oxidative phosphorylation in FLT3-ITD leukemia cell lines. After treatment with quizartinib, the basal and maximal oxygen consumption (OCR) of leukemia cells decreased. Metabolomic analysis using isotopic glucose U-13C6 or glutamine U-13C5 have shown that pyruvate derived from glucose was weakly oxidized in the mitochondria of untreated or quizartinib-treated cells. In contrast, a large amount of glutamine was oxidized by the tricarboxylic acid (TCA) cycle in untreated FLT3-ITD cells. Quizartinib reduced but did not abolish the complete oxidation of glutamine in leukemia cells. This result showed that even in the presence of quizartinib, FLT3-ITD cells maintained partially oxygen consumption trough glutamine oxidation. L-asparaginases (Kidrolase, Erwinase) are enzymes capable of hydrolyzing amino acids such as asparagine and glutamine. These clinical drugs have been approved for the treatment of chronic lymphocytic leukemia (CLL) and pediatric acute myeloid leukemia. We have shown that L-asparaginases weakly induced cell death in FLT3-ITD leukemia cells. Interestingly, our isobologram analysis showed that L-asparaginase acted synergistically with quizartinib to induce apoptosis. To determine whether glutamine metabolism also promoted the persistence of AML under treatment with quizartinib, we treated MOLM13 with quizartinib for several days. After long-term treatment, the percentage of surviving cells (annexin-V negative) was less than 5%. These persistent cells were characterized by an increased mitochondrial membrane potential (Δψm) and mitochondrial ROS. After treatment with the combination of L-asparaginase and quizartinib, the percentage of persistent cells decreased drastically. The combination of L-asparaginase and quizartinib was also more effective than quizartinib alone in reducing the size and number of colonies of MOLM13 in a model based on the formation of leukemia colonies growing in methylcellulose. Conclusion Persistent leukemia cells that survive after exposure to FLT3 inhibitor quizartinib can be targeted by the clinical drug L-asparaginases. This metabolic strategy could reduce the emergence of leukemic cells resistant to quizartinib. Disclosures Kluza: Daiichi-Sankyo: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document