Genetic Deletion of CCRL2 Impairs Macrophage Accumulation in Arterial Intima and Attenuates Atherosclerotic Plaque Development

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2239-2239
Author(s):  
Yiren Cao ◽  
Fei Yang ◽  
Chaojun Tang ◽  
Shuhong Hu ◽  
Brian Anthony Zabel ◽  
...  

Abstract Atherosclerosis is a chronic inflammatory disease of the arterial wall elicited by accumulation of LDL and leucocytes in the subendothelium at predilection sites with disturbed laminar flow. Chemokines and their receptors appear to act as critical players in atherosclerosis as they not only direct atherogenic recruitment of leucocytes but also exert cell hemostatic functions by chemokine ligand-receptor axes and their specific or combined contributions. Chemokine (C-C motif) receptor-like 2 (CCRL2) is an atypical chemokine receptor that cooperates with its ligand chemerin to play a role in cell trafficking and inflammatory response, the processes usually occur in atherosclerosis, but its role in atherosclerosis is not clear. Here we investigated the potential role of CCRL2 in atherogenesis using the classic apolipoprotein E-deficient (ApoE-/-) mouse model of atherosclerosis. Atherosclerosis-prone ApoE-/- mice were crossed with CCRL2-/- mice to obtain ApoE-/-CCRL2+/+ and ApoE-/-CCRL2-/- mice. Male mice of both genotypes were fed a standard chow diet until 8 weeks of age and then switched to a high fat diet for 16 weeks. Aortas were dissected and assessed by en face staining. Although CCRL2 deletion did not change mouse blood lipid profile and body weight, the atherosclerotic plaque area of the total aorta was reduced by 27.2% (P=0.0379) in ApoE-/-CCRL2-/- mice compared with ApoE-/-CCRL2+/+ mice with striking difference occurring in aortic arch. A reduction of lipid deposition by 32.6% (P=0.0089) was also observed in aortic root sections when CCRL2 was deleted. Further studies showed that deletion of CCRL2 reduced macrophage accumulation and polarization during the development of atherosclerosis. CCRL2 not only expresses in high levels in the plaques of ApoE-/- mice on a high fat diet but also co-localizes with macrophages and chemerin. Interestingly, using CMKLR1-/- chimeric mice, we showed that chemerin/CMKLR1/CCRL2 axis is involved in leucocyte infiltration and possibly affects plaque formation. More importantly, partial carotid artery ligation (PCL) model confirmed that disturbed blood flow-induced endothelial expression of CCRL2 modulates plaque formation. In conclusion, our results demonstrate that CCRL2 deficiency delays macrophage accumulation and the formation of atherosclerotic plaques potentially via the disruption of chemerin/CMKLR1/CCRL2 axis and the loss of CCRL2 response to the disturbed flow, which may represent a novel mechanism of atherosclerosis. This work was supported by Natural Science Foundation of China (grant 81370373 to L.Z. and 31300781 to C.T.) Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
L Xu ◽  
Y Dai ◽  
K Yao ◽  
H Yang ◽  
A Sun ◽  
...  

Abstract Background Vulnerable plaques are characterized by infiltration of inflammatory cells, playing a key role in the progression of acute coronary events. It's important to clarify the inflammatory mechanism of unstable plaque formation. Several clinical trials have demonstrated that dapagliflozin could reduce major adverse cardiac events in whether diabetic or non-diabetic patients. However, the underlying cardioprotective mechanism of dapagliflozin remains unclear. This study was aimed to investigate the role of dapagliflozin in regulating macrophage pyroptosis and vulnerable plaque formation. Methods 20 ApoE−/− mice (control) were fed with high fat diet while another 20 ApoE−/− mice were challenged with high fat diet plus dapagliflozin for 12 weeks. The extent and instability of atherosclerotic plaque was determined by oil-red staining, HE staining, immunofluorescence staining and electron microscopy. Changes in subsets of immune cells were evaluated by flow cytometry. Plasma cytokines were assessed by ELISA. Microarray analysis was applied to detect gene expressions while Western blot and real-time PCR was used to assess gene expression levels. Results Morphology studies revealed that dapagliflozin could inhibit plaque formation and reduce instability in ApoE−/− mice. FACS data showed that dapagliflozin could decrease CD11b+Ly6Chigh M1 macrophages differentiation and inhibit foam cells formation in ApoE−/− mice. Microarray analysis and in vitro studies exhibited that dapagliflozin could induce the down regulation of NLRP3, caspase-1, IL-1β, IL-18 and MMP-7/10/12/14 to retard macrophage pyroptosis and foam cell formation. Conclusions We have characterized a novel role for dapagliflozin in modulating atherosclerotic lesion development and progression. We envision that this study may provide several potential therapeutic targets for treatment of acute coronary syndromes. FUNDunding Acknowledgement Type of funding sources: Public Institution(s). Main funding source(s): Shanghai Sailing Program


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2205-2205
Author(s):  
Chintan Gandhi ◽  
Mohammad Moshahid Khan ◽  
Anil K Chauhan

Abstract Abstract 2205 Background and Objective: The fibronectin isoform containing the alternatively-spliced extra domain A (EDA+-FN) is normally absent from the circulation, but plasma levels of EDA+-FN can become markedly elevated in several pathological conditions including atherosclerosis. It remains unclear in humans whether these elevated levels of EDA+-FN are actively contributing to disease pathogenesis, or rather simply serving as a marker associated with vascular stress and/or injury. Several in vitro studies suggest that EDA+-FN can activate toll-like receptor 4 (TLR4), an innate immune receptor that triggers pro-inflammatory responses We hypothesize that presence of EDA+-FN in plasma promotes inflammation and accelerates atherosclerotic plaque formation. Model and Method: We generated EDA+/+/ApoE−/− mice, which contain optimized spliced sites at both splicing junctions of the EDA exon and constitutively express only EDA+-FN, and EDA−/−/ApoE−/− mice, which contain an EDA-null allele of the EDA exon and express only FN lacking EDA. ApoE−/−, EDA+/+/ApoE−/− and EDA−/−/ApoE−/− were fed a high-fat Western diet (21% fat and 0.2% cholesterol) beginning at 6 weeks until they were sacrificed at 5 months of age (i.e., 14 weeks on high-fat Western diet). We compared the extent of atherosclerosis in whole aortae, stained with Oil Red O and en face lesion area measured by morphometry, and in the cross section area of the aortic sinus using the VerHoeffs/Van Gieson stain. Results: We report that atherosclerotic plaque (% of total aorta) formation in the aorta of EDA+/+/ApoE−/− mice was increased by two-fold compared to control ApoE−/− mice (P<0.0001). Deletion of the alternatively spliced EDA domain in the ApoE−/− mice (EDA−/−/ApoE−/−) significantly reduced atherosclerotic plaque formation in the aorta (P<0.05) compared to ApoE−/− mice. Total cholesterol and triglycerides levels were similar in ApoE−/−, EDA+/+/ApoE−/− and EDA−/−/ApoE−/− mice. Similarly, atherosclerotic plaque formation was significantly increased in the aortic sinus of EDA+/+/ApoE−/− mice, intermediate in control ApoE−/− mice and reduced in EDA−/−/ApoE−/− mice (P<0.05). Additionally, we found that macrophage content, as analyzed by immunohistochemistry, was significantly elevated in the aortic root lesions of EDA+/+/ApoE−/− mice and reduced in EDA−/−/ApoE−/− mice compared to ApoE−/− mice (P<0.05). Moreover, EDA+-FN did not affect the sex-dependent regulation of atherosclerosis in ApoE−/− mice. Future experiments using EDA+/+/ApoE−/−/TLR4−/− are under progress to determine whether EDA+-FN exacerbate atherosclerosis via upregulating TLR4 signaling. Conclusions: Our findings reveal that EDA+-FN is pro-inflammatory and promotes atherosclerotic lesion formation and that monitoring plasma EDA+-FN might have prognostic value in patients at high risk for atherosclerosis. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Shen ◽  
Su Jin Song ◽  
Narae Keum ◽  
Taesun Park

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chloe G. Henderson ◽  
Damian L. Turner ◽  
Steven J. Swoap

Alternate day fasting (ADF) induces weight loss and improves various markers of health in rodents and humans. However, it is unclear whether the benefits of ADF are derived from the lower caloric intake of ADF or from the 24-h fasting period. Therefore, this study directly compared selected markers for health – such as glucose control, body weight, liver triglycerides, T cell frequencies, and others – in high-fat (60% calories from fat) diet-induced obese mice subjected to either ADF or caloric restriction (CR). Obese mice were randomly assigned to one of four groups: (1) ADF: remained on the high-fat diet, but fed on alternate days (n = 5), (2) PF: remained on the high-fat diet, but pair-fed to the ADF group (n = 5), (3) LF: moved to a chow ad libitum diet (n = 5; 17% calories from fat), and (4) HF: remained on the high-fat ad libitum diet (n = 5). An additional group of non-obese mice maintained on a chow diet since weaning were used as controls (CON: n = 5). After 10 weeks, ADF, PF, and LF mice ate fewer kcals, had a lower body mass, had smaller epididymal fat pads, improved glucose tolerance, and had a lower hepatic triglyceride content relative to HF mice (p &lt; 0.05), but none reached that of CON mice in these measures. T cell frequencies of the spleen, blood, and mesenteric lymph nodes were reduced in ADF, PF, and HF compared to the CON group. Importantly, there were no significant differences between the ADF and PF groups in any of the measurements made in the current study. These data suggest that ADF, PF, and LF diets each lead to improved markers of health relative to high-fat diet-induced obese mice, and that the caloric restriction associated with ADF is the major factor for the noted improvements.


Sign in / Sign up

Export Citation Format

Share Document