In-Vivo Labelling Studies in Patients with Chronic Lymphocytic Leukemia Studies Demonstrate the Existence of Apparently Distinct Subpopulations That Differ in Phenotype and Proliferative Capacity

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 615-615 ◽  
Author(s):  
Kirsty Cuthill ◽  
Yan Zhang ◽  
Andrea Buggins ◽  
Eve Coulter ◽  
Piers E. Patten ◽  
...  

Abstract It is now generally believed that proliferation of the neoplastic clone in chronic lymphocytic leukemia (CLL) takes place in lymphoid tissues where interactions involving the B-cell receptor (BCR) and other microenvironmental elements take place. Previous studies using in-vivo labelling with deuterated water have shown that recently proliferated emigrants from lymphoid tissues express low levels of the chemokine receptor CXCR4 and high levels of CD5 (CXCR4loCD5hi). It has been proposed that, following entry into the peripheral blood (PB), these cells become quiescent, re-express CXCR4 and downregulate CD5 allowing re-entry into tissues and further rounds of proliferation. In the present study we used in-vivo labelling with deuterated glucose (6,6-2H2-glucose, D2G) to investigate the proliferation and release of CLL cells into PB. In contrast to deuterated water, this technique allows pulse labelling of a distinct cohort of cells, which can then be tracked over time in-vivo. Labelling studies were performed in 10 patients with previously untreated, non-progressive CLL. Patients underwent 10 hours of labelling with oral 2DG, after which peripheral blood and lymph node compartments were serially sampled. DNA Deuterium enrichment was measured in the entire CLL population and in flow-sorted subsets defined by CXCR4/CD5 and surface IgM (sIgM) expression. Maximum release of labelled cells into PB occurred after a median of 14 days (4-56 days). The disappearance rate was very slow, with labelled cells detectable after 56 days in half of the subjects. In one case we were able to track labelled cells in both lymph node (LN) and PB and demonstrated an increase in the fraction of labelled cells in the LN between days 7 and 28, consistent with re-entry into this compartment. Subpopulations of PB CLL cells, defined by CXCR4 and CD5 expression were studied over time to investigate the dynamic nature of these molecules in circulating cells. As previously reported, maximum rapid incorporation of deuterium was observed in the CXCR4loCD5hi fraction, equivalent to 1.15 ± 0.04 %/d fractional synthesis at 7 days. Conversely, CXCR4hiCD5lo cells remained largely unlabelled throughout the 8-week study, reaching a maximum of only 0.01 ± 0.003 %/d, suggesting that they represent a non-proliferating population, not derived from the CXCR4loCD5hi subset. In contrast, CXCR4/CD5 intermediate cells exhibited delayed and intermediate labelling, peaking at 0.1 ± 0.02 %/d at 28 days. This sequential labelling pattern suggests that they derive from the CXCR4loCD5hi subset. Since both CXCR4 and CD5 expression are modulated by BCR signalling, we went on to sort cells according to sIgM expression and found maximum labelling in the sIgM high subset with little or no deuterium incorporation in the sIgM low fraction at any time. Again, the sIgM intermediate subset showed delayed labelling, suggesting that they are derived from sIgM-high cells. These observations provide further evidence for clonal heterogeneity in CLL and suggest the existence of distinct but interdependent subpopulations. Recently-divided cells are CXCR4loCD5hi, but appear to transition to an intermediate phenotype by down-regulation of CD5 and sIgM and upregulation of CXCR4 over the ensuing weeks, but do not appear to transition to CXCR4hiCD5lo cells over the time-course of the experiment. Our findings have clinical relevance, since these functionally distinct subsets might also differ in their responsiveness to therapeutic agents, such as drugs that block BCR signalling. Figure 1. Deuterium enrichment in CLL subsets over eight week study Figure 1. Deuterium enrichment in CLL subsets over eight week study Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4157-4157 ◽  
Author(s):  
Loïc Ysebaert ◽  
Christian Klein ◽  
Anne Quillet-Mary

Abstract Introduction: Ibrutinib is an irreversible first-in-class inhibitor of BTK (Bruton tyrosine kinase) approved for the therapy of relapsed/refractory chronic lymphocytic leukemia (R/R CLL). The drug mediates a transient increase in circulating CLL cells together with reduction in spleen and lymph node size, by both cellular mobilization and apoptosis of resident CLL cells (Herman SE, et al. Blood 2014;123:3286-95). These events occur with important patients' inter-variability (Herman SE, et al. Leukemia 2014;28:2188-96), one cluster of patients presents with greater peak lymphocytosis (resolving between 1 to more than 6 months), while another cluster presents with rapid resolution of lymphocytosis and lymph node/spleen size within 2 months. Upon such dramatic shifts in disease distribution the first 2 months of therapy (and sometimes lasting >6-12 months), the question of phenotypic changes, sensitivity to monoclonal antibodies (MoAbs), and subclonal diversity of circulating cells remains central for further combination studies. In this study, we evaluated changes in CD5, CD19, and CD20 expression in vitro/in vivo, and peripheral blood side population (SP) cells (a fraction highly enriched in chemorefractory cells, Gross E, et al. Leukemia 2010;24:1885-92) upon ibrutinib therapy. We also investigated whether patterns of lymphocytosis may predict for response to rituximab (RTX) or obinutuzumab (GA101). Methods: R/R CLL patients (n=25) median prior lines=4, range=2-8), PBMCs were collected before ibrutinib initiation and after 1 and 2 months of therapy. PBMC were seeded at 10 x 106 cells/mL in culture medium and treated for 7 days with 10µg/mL control IgG1 (trastuzumab), RTX or obinutuzumab. The specific percentage of remaining B cells in MoAbs-treated samples was calculated as (absolute number in treated samples/absolute number in control samples) x 100. For each condition, absolute number of remaining B cells =total viable cell number (trypan blue exclusion determination) x % of viable CD19+/CD5+ lymphocytes (flow cytometry determination). For statistical analyses, Student's test (paired, two-sided) was used (*p<0.05;**p<0.01;***p<0.001). Results: We firstanalyzed patterns ofabsolute lymphocytes count ( ALC) across 23 patients receiving ibrutinib (Fig 1a) to classify them into two clusters as previously published (Fig 1b): Cluster 1 and cluster 2 did not differ significantly in terms of initial lymphocytosis, line of therapy, gender, karyotype, IgHV. Interestingly, the SP fraction in peripheral blood was significantly increased (median: 5/microL before ibrutinib, 10/microL at peak lymphocytosis), suggesting mobilization of resident SP cells, although no apoptosis was detected (in vitro or in vivo) with ibrutinib. We next assessed CD5, CD19 and CD20 levels in vitro (n=22) and in vivo (n=15) upon ibrutinib therapy. In vitro, ibrutinib significantly reduced CD20 (Fig 2a) and CD19 surface expression, but not CD5; nevertheless anti-CD20 MoAbs still had activity in vitro (Fig 2b). Expression levels were not linked to clusters 1 or 2. Finally we compared RTX- and obinutuzumab-induced B-cell depletion before administration of ibrutinib, and at various sampling time points (1 to 6 months). Obinutuzumab induced significantly superior depletion at various timepoints than RTX. More interestingly, when analysis was performed from paired samples before/during ibrutinib therapy from the same ibrutinib-exposed patients, only obinutuzumab-induced depletion was increased in cluster 2 (Fig 3). Conclusions: Ongoing and planned clinical studies evaluate the combination of ibrutinib and obinutuzumab in CLL (first-line and relapsed). Some concerns have emerged due to published preclinical data showing that ibrutinib can interfere with efficacy of therapeutic antibodies. Here, we suggest that ibrutinib-exposed CLL cells, despite wide inter-patient heterogeneity, are targetable with obinutuzumab. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures Klein: Roche: Employment.


Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5463-5472 ◽  
Author(s):  
Davide Bagnara ◽  
Matthew S. Kaufman ◽  
Carlo Calissano ◽  
Sonia Marsilio ◽  
Piers E. M. Patten ◽  
...  

AbstractChronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γcnull mice under the influence of activated CLL-derived T lymphocytes. By cotransferring autologous T lymphocytes, activated in vivo by alloantigens, the survival and growth of primary CFSE-labeled CLL cells in vivo is achieved and quantified. Using this approach, we have identified key roles for CD4+ T cells in CLL expansion, a direct link between CD38 expression by leukemic B cells and their activation, and support for CLL cells preferentially proliferating in secondary lymphoid tissues. The model should simplify analyzing kinetics of CLL cells in vivo, deciphering involvement of nonleukemic elements and nongenetic factors promoting CLL cell growth, identifying and characterizing potential leukemic stem cells, and permitting preclinical studies of novel therapeutics. Because autologous activated T lymphocytes are 2-edged swords, generating unwanted graph-versus-host and possibly autologous antitumor reactions, the model may also facilitate analyses of T-cell populations involved in immune surveillance relevant to hematopoietic transplantation and tumor cytoxicity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 585-585 ◽  
Author(s):  
Valeria Spina ◽  
Gabriela Forestieri ◽  
Antonella Zucchetto ◽  
Alessio Bruscaggin ◽  
Tamara Bittolo ◽  
...  

Abstract Introduction. Ibrutinib inhibits the BTK molecule downstream the B-cell receptor (BCR). Though highly active in high risk chronic lymphocytic leukemia (CLL), the most typical response achievable in patients is a minimal residual disease (MRD) positive partial remission (PR) which is maintained until the development of genetically driven resistance caused by the acquisition of mutations in the BTK or PLCG2 genes. The study aims at characterizing the adaptation process allowing residual CLL cells to persist despite BTK inhibition. Methods. The IOSI-EMA-001 study (NCT02827617) is an observational study consisting in the prospective and longitudinal collection of peripheral blood samples and clinical data from high risk CLL patients treated with ibrutinib. Peripheral blood CLL cells longitudinally drawn from patients before treatment start and at fixed timepoints under ibrutinib were monitored by: i) next generation flow cytometry approaches for changes in proliferation rate, surfaceome, and pathway activation; and ii) CAPP-seq targeted deep next generation (sensitivity ~10-3) for clonal evolution. Results. The study cohort comprised 31 high risk CLL patients, including 15 treatment naïve, 16 relapsed, 80% IGHV unmutated, 42% 17p deleted and 55% TP53 mutated. Median duration of ibrutinib treatment was 45 weeks (24-72 weeks). All patients obtained a MRD positive PR that was maintained in all but one who progressed with a PLCG2 mutation (VAF 3%). Compared to baseline, under ibrutinib therapy CLL cells slowed down their proliferation, as suggested by the decreased expression of Ki-67, the reduction of the proliferating fraction (CXCR4dimCD5bright), and the increase of the resting fraction (CXCR4brightCD5dim). Compared to baseline, under ibrutinib therapy CLL cells also upregulated BCR and adhesion/homing proteins, and decreased the expression of BCR inhibitor proteins. Upon stimulation of the BCR with anti-IgM, the downstream path through pBTK and pPLCG2 was inhibited by ibrutinib, while conversely the downstream path through pAKT and pERK was still inducible throughout all the assessed timepoints. The proportion of CLL cells harboring nuclear localization of NF-kB progressively increased over time under ibrutinib. NF-kB nuclear localization was inducible throughout all the assessed timepoints by CD40L stimulation of the non-canonical NF-kB pathway, but not by anti-IgM stimulation of the BCR/canonical NF-kB pathway. Overall, 880 individual mutations were longitudinally discovered and monitored across a total of 121 sequential timepoints collected during ibrutinib treatment. Clonal evolution was observed in (67.7%) cases, a proportion rate previously documented in CLL treated with chemoimmunotherapy. Clonal evolution appeared to be heterogeneous involving different genes without a stereotypic targeting. Consistently, none of the main driver gene mutations was homogeneously selected or suppressed by ibrutinib suggesting that the biological adaptation of CLL cells under ibrutinib is not genetically driven. Clonal evolution propensity was not associated with any of the biomarkers of the disease, and it did not decrease over time under ibrutinib. Conclusions. Taken together these results suggest that residual CLL cells persisting under ibrutinib therapy adapt their phenotype by upregulating adhesion molecules, chemokine receptors and BCR molecules, and by maintaining a competence of BCR signaling through the PI3K/AKT/ERK pathway. The progressive selection of CLL cells having NF-kB in the nucleus, likely due to the BTK independent non-canonical NF-kB pathway, might explain their survival despite ibrutinib therapy. Finally, clonal evolution is not suppressed by ibrutinib chemotherapy, and despite does not seem to be directly involved in such adaptation process, may ultimately favor the acquisition of BTK and PLCG2 ibrutinib resistance mutations. Disclosures Zucca: Celltrion: Consultancy; AstraZeneca: Consultancy. Ghia:Sunesis: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; AbbVie, Inc: Honoraria, Research Funding; Acerta: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; BeiGene: Honoraria, Research Funding. Montillo:Janssen: Consultancy, Honoraria; Gilead: Consultancy, Honoraria, Speakers Bureau; AbbVie: Consultancy, Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Research Funding. Tedeschi:Janssen: Consultancy, Speakers Bureau; Gilead: Consultancy; AbbVie: Consultancy. Gaidano:AbbVie: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Morphosys: Honoraria; Roche: Consultancy, Honoraria.


Blood ◽  
1972 ◽  
Vol 40 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Seth Pincus ◽  
Celso Bianco ◽  
Victor Nussenzweig

Abstract In the present study we present evidence that the proportion of complement-receptor lymphocytes (CRL) is greatly increased in the circulation in most cases of chronic lymphocytic leukemia (CLL). Lymphocytes (&gt; 99% pure, 70% recovery) were obtained from the peripheral blood of normal individuals by separation of the mononuclear cells from the leukocyte-enriched plasma by differential flotation in Hypaque-Ficoll and incubation of the mononuclear cells with iron-containing particles followed by removal of the phagocytes with a magnet. Complement - receptor lymphocytes were detected by incubating lymphocytes with sheep erythrocytes coated with antibody and mouse complement (EAC) and counting the EAC—CRL rosettes under the microscope. 7.1 ± 3.8% of normal peripheral blood lymphocytes, 31.0 ± 6.9% of lymph node, and 59.6 ± 13.2% of tonsil lymphocytes bind EAC. The binding was C3-dependent since it could be inhibited specifically by papain fragments of rabbit antibodies to mouse C3. Among lymphocytes from the peripheral blood of patients with CLL, 50.7 ± 25.0% bear the complement receptor. These results suggest that CLL preferentially affects B cells.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4403-4413 ◽  
Author(s):  
Meike Vogler ◽  
Michael Butterworth ◽  
Aneela Majid ◽  
Renata J. Walewska ◽  
Xiao-Ming Sun ◽  
...  

Abstract ABT-737 and its orally active analog, ABT-263, are rationally designed inhibitors of BCL2 and BCL-XL. ABT-263 shows promising activity in early phase 1 clinical trials in B-cell malignancies, particularly chronic lymphocytic leukemia (CLL). In vitro, peripheral blood CLL cells are extremely sensitive to ABT-737 (EC50 ∼7 nM), with rapid induction of apoptosis in all 60 patients tested, independent of parameters associated with disease progression and chemotherapy resistance. In contrast to data from cell lines, ABT-737–induced apoptosis in CLL cells was largely MCL1-independent. Because CLL cells within lymph nodes are more resistant to apoptosis than those in peripheral blood, CLL cells were cultured on CD154-expressing fibroblasts in the presence of interleukin-4 (IL-4) to mimic the lymph node microenvironment. CLL cells thus cultured developed an approximately 1000-fold resistance to ABT-737 within 24 hours. Investigations of the underlying mechanism revealed that this resistance occurred upstream of mitochondrial perturbation and involved de novo synthesis of the antiapoptotic proteins BCL-XL and BCL2A1, which were responsible for resistance to low and high ABT-737 concentrations, respectively. Our data indicate that after therapy with ABT-737–related inhibitors, resistant CLL cells might develop in lymph nodes in vivo and that treatment strategies targeting multiple BCL2 antiapoptotic members simultaneously may have synergistic activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Piers E. M. Patten ◽  
Gerardo Ferrer ◽  
Shih-Shih Chen ◽  
Jonathan E. Kolitz ◽  
Kanti R. Rai ◽  
...  

Patient-derived xenograft models of chronic lymphocytic leukemia (CLL) can be created using highly immunodeficient animals, allowing analysis of primary tumor cells in an in vivo setting. However, unlike many other tumors, CLL B lymphocytes do not reproducibly grow in xenografts without manipulation, proliferating only when there is concomitant expansion of T cells. Here we show that in vitro pre-activation of CLL-derived T lymphocytes allows for a reliable and robust system for primary CLL cell growth within a fully autologous system that uses small numbers of cells and does not require pre-conditioning. In this system, growth of normal T and leukemic B cells follows four distinct temporal phases, each with characteristic blood and tissue findings. Phase 1 constitutes a period during which resting CLL B cells predominate, with cells aggregating at perivascular areas most often in the spleen. In Phase 2, T cells expand and provide T-cell help to promote B-cell division and expansion. Growth of CLL B and T cells persists in Phase 3, although some leukemic B cells undergo differentiation to more mature B-lineage cells (plasmablasts and plasma cells). By Phase 4, CLL B cells are for the most part lost with only T cells remaining. The required B-T cell interactions are not dependent on other human hematopoietic cells nor on murine macrophages or follicular dendritic cells, which appear to be relatively excluded from the perivascular lymphoid aggregates. Notably, the growth kinetics and degree of anatomic localization of CLL B and T cells is significantly influenced by intravenous versus intraperitoneal administration. Importantly, B cells delivered intraperitoneally either remain within the peritoneal cavity in a quiescent state, despite the presence of dividing T cells, or migrate to lymphoid tissues where they actively divide; this dichotomy mimics the human condition in that cells in primary lymphoid tissues and the blood are predominately resting, whereas those in secondary lymphoid tissues proliferate. Finally, the utility of this approach is illustrated by documenting the effects of a bispecific antibody reactive with B and T cells. Collectively, this model represents a powerful tool to evaluate CLL biology and novel therapeutics in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3607-3607
Author(s):  
Ozren Jaksic ◽  
Branimir Gizdic ◽  
Tajana Stoos Veic ◽  
Vlatka Pandzic Jaksic ◽  
Rajko Kusec ◽  
...  

Abstract Abstract 3607 Background: In B-cell chronic lymphocytic leukemia (B-CLL) there is a well documented intraclonal and interclonal variability of B-CLL cells in different lymphoid compartments with respect to the expression of a number of surface and intracellular molecules (for example CD38 and ZAP-70). This variability in part may reflect a number of interactions of malignant B-CLL clone with supporting microenviroment including cells (T-cells, nurse-like cells, etc.), cytokines, chemokines and stroma. One of the key interactions of B-CLL clone is with T-cells, through CD154/CD40 system. It is important pathway modulating survival, drug resistance and immunity. It is known that CD154 is transiently expressed on CD4+ T cells, as well as that CD154 can be coexpressed on B-CLL cells with CD40 in a subpopulation of B-CLL patients. Its expression on B-CLL cells can be induced by gene therapy and lenalidomide, being in part responsible for their therapeutic effects. Aim of this study was to determine the level of expression of CD154 and CD40 in vivo on B-CLL cells and T lymphocytes and to evaluate intra and interclonal differences due to different microenvironment, i.e. peripheral blood, bone marrow and lymph nodes. Methods: peripheral blood, (PB), bone marrow (BM) and lymph node (LN) samples were taken by conventional techniques (venepuncture and fine needle aspiration) on the same day. The expression level of CD154 and CD40 molecules on CD19+CD5+ B-CLL cells and CD19-CD5+ T cells was analyzed by flow cytometry. Results were expressed as mean fluorescence intensity (MFI) and analyzed by paired tests. Results: samples taken from 21 typical B-CLL patients with median age of 72 years were analyzed. There were 9 males and 12 females. Mean beta-2 microglobuin was 4.3mg/l, mean Total Tumor Mass size was 8.9 and mean Tumor Distribution pattern was 0.75. There were 2, 14 and 5 patients in Rai stage 0, I+II and III+IV, respectively. There were 6 previously treated patients (but off therapy 3 months before sampling). The expression level of CD154 was absent/low on T-cells and in 14/21 patients on B-CLL cells. However in 7/21 patients B-CLL cells had higher CD154 expression (“CD154 positive” patients). There was no detectible difference in CD154 expression on T cells between compartments, while on B-CLL cells there was highest expression in lymph nodes and lowest in peripheral blood (p<0.01). CD40 expression on B-CLL cells was significantly higher than CD154, i.e. all cases were positive, and there was no significant difference between lymphoid compartments. There was no significant difference between CD154 positive and negative patients in measured disease parameters. Conclusions: our results show that CD154 expression on T-cells is absent/low and not significantly different between lymphoid compartments regardless of different microenvironment milieu. CD40 expression on B-CLL cells is high and comparable through compartments. In subset of patients there is CD154 positivity on B-CLL cells and shows strong association with lymphoid compartments possibly indicating microenviroment influence on CD154/CD40 system in B-CLL in vivo. These results warrant further studies to indentify the role of CD154 expression on B-CLL cells in pathologic process and its regulation and may eventually uncover novel or modulate existing innovative therapeutic approaches (like gene therapy or immunomodulatory agents like lenalidomide). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 184-184
Author(s):  
Thomas M. Herndon ◽  
Shih-Shih Chen ◽  
Michelle Gatmaitan ◽  
Claire Emson ◽  
Janet Valdez ◽  
...  

Abstract Abstract 184 Chronic Lymphocytic Leukemia (CLL) is characterized by the accumulation of mature B cells in peripheral blood (PB), bone marrow (BM) and lymph node (LN). Recent studies identified the LN as an important site of tumor cell activation and proliferation (Herishanu et al 2011). Using in vivo labeling of “newly-born” cells with deuterated water (2H2O; heavy water), the proliferation rate of CLL cells was estimated to range between 0.1 to >1% of the clone per day (Messmer et al 2005). Furthermore, a CXCR4dimCD5bright population of CLL cells in the PB contained more deuterium (2H)-labeled DNA and hence “recently-born cells than the CXCR4brightCD5dim population (Calissano et al 2011). Possible explanations for this observation include that CXCR4dimCD5bright cells proliferate more rapidly in the PB or that these cells are recent emigrants from tissues where proliferation occurs. As prior studies were performed on PB cells, the growth rates and characterization of the proliferative fraction of CLL cells in the LN remain unknown. Here we used 2H-labelling to directly compare cellular growth rates in PB, BM, and LN. Patients drank 2H2O for 28 days; on day 13 an excisional LN biopsy and a BM aspirate were obtained. PB samples were obtained at baseline and on days 13 and 28. CLL cells were isolated using positive selection, or sorted based on reciprocal differences in CXCR4 and CD5 density for isolation of “proliferative” (CXCR4dimCD5bright), “intermediate” (CXCR4intCD5int), and “resting” (CXCR4brightCD5dim) fractions of CLL clones. 2H incorporation into the DNA of newly divided cells was measured by mass spectrometry. Raw values were normalized to the 2H2O content in total body water. Cellular growth rates were calculated by dividing the fraction of 2H-labeled cells by the number of days from the start of the labeling period. To date, samples from 6 treatment-naïve CLL patients have been analyzed. On day 13, up to 16%, 9%, and 24% of the CLL cells sampled from PB, BM, and LN, respectively were 2H-labeled. The resulting mean estimated growth rate in % of the clone per day was for PB 0.41 (0.09 – 1.13), for BM 0.41 (0.28 – 0.68), and for LN 0.83 (0.31 – 1.84). The difference in growth rates between PB and LN was statistically significant (P<.02) and on average 2.5 times higher in the LN than in the PB. On day 28, the total fraction of 2H-labeled PB cells had further increased with the calculated growth rate in agreement with the growth rate in PB on day 13. CLL cells in the BM had a mean growth rate of 0.41% (0.28 – 0.68) of the clone per day, which was not significantly different than the growth rate in the PB. In fact in 2 patients the growth rate in the BM was lower than in the PB. The growth rates determined in LN and PB on day 13 were inversely correlated to the lymphocyte doubling time (r=-0.65 by Pearson correlation) and tended to be higher in patients with ZAP70 positive CLL. In keeping with the growth rates measured by 2H labeling, the fraction of Ki67-expressing CLL cells was higher in the LN than in the PB [% cells mean ± SD (PB = 3.8 ± 1.6, LN = 18.4 ± 3.1; P=.005)]. Interestingly, while the average CLL growth rate in LNs by 2H-labeling was 2.5-times the rate in PB, the Ki-67 positive fraction in LNs was 5-times the fraction in the PB, further supporting the view that active clonal proliferation occurs predominantly in the LN, from which recently-born cells enter the PB. Consistent with a prior study of PB CLL cells (Calissano et al 2011), the CXCR4dimCD5bright subset in LN exhibited higher 2H-labeling than the bulk of the clonal cells (intermediate fraction) and the resting fraction. These studies indicate that a CXCR4dimCD5bright subset exists in LN-resident CLL cells and has higher 2H-labeling than the rest of the clone. Specifically, the calculated growth rate of the CXCR4dimCD5bright subset was on average 3.2-times the growth rate of all CLL cells in the LN. Moreover, the data suggest that sampling the PB for newly-born cells is a reliable measure of the degree of proliferation occurring in LNs. Taken together our data show that the proliferation rate of CLL cells is higher in the LN than in the BM and PB and suggest that some of the newborn cells exit the LN within days. A clonal subset of CXCR4dimCD5bright cells is present in both the LN and PB and might harbor the proliferative core of the disease. Disclosures: Gatmaitan: KineMed: Employment. Emson:KineMed: Employment. Chiorazzi:KineMed: Dr. Chiorazzi holds stock options in KineMed, Inc. Other.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2033-2033 ◽  
Author(s):  
Danielle M. Brander ◽  
Michael Y. Choi ◽  
Andrew W. Roberts ◽  
Shuo Ma ◽  
L. Leanne Lash ◽  
...  

Abstract Background: Venetoclax (VEN) is a selective, potent, orally bioavailable BCL-2 inhibitor FDA-approved for patients with del(17p) chronic lymphocytic leukemia (CLL) and who have received ≥1 prior therapy. Based on preclinical evidence of synergy, VEN plus rituximab is being assessed in an ongoing Phase 1b study. Methods: Patients with relapsed/refractory (R/R) CLL received daily VEN with stepwise ramp-up over 3-4 weeks to reach daily doses of 200-600mg. After 1 week at the target dose, monthly rituximab was added for 6 doses. Responses and progression were assessed by iwCLL criteria with CT scan and bone marrow biopsy. Bone marrow assessments were done at screening, completion of combination therapy (month 7), and 2 months after clinical/radiologic criteria of iwCLL response were met. Minimal residual disease (MRD) was assessed in peripheral blood and marrow aspirates using ≥4 color flow cytometry (min sensitivity: 0.01%). Data cutoff was 04March2016, with analysis focusing on updated safety of cytopenias experienced on the course of treatment. Results: Forty-ninepatients enrolled (48 CLL/1 SLL). Patients had received a median of 2 prior therapies (range: 1-5) and disease in 25 (51%) was considered refractory to the most recent therapy. Median time on study was 28 (<1-42) months, with 31 patients active on study. Eighteen patients discontinued: 11 due to disease progression, 3 due to toxicity (peripheral neuropathy [1], MDS [1], and death due to TLS [1]), 3 withdrew consent, and 1 was lost to follow up. Across all doses, the most common AEs of any grade were diarrhea (57%), neutropenia (55%), upper respiratory tract infection (55%), and nausea (51%). Peripheral blood cytopenias were the most common Grade 3/4 AEs (neutropenia [53%], thrombocytopenia [16%], anemia [14%], febrile neutropenia [12%], and leukopenia [12%]). Twenty-seven (55%) patients had a history of neutropenia, of whom 6 were receiving G-CSF support prior to starting VEN. Overall, in the first month of therapy, 15 (31%) experienced an AE of neutropenia (any grade). Thereafter, the rate of new AEs of neutropenia decreased over time. While there was individual patient variability, mean ANC was stable over time. Overall, 26 (53%) patients had Grade 3/4 neutropenia. Neutropenia was generally well tolerated and managed by G-CSF support in 24 patients, in addition to ≥1 dose modification in 11 of the 24 patients. Of 8 (16%) patients who experienced grade 3 infections, 2 were while neutropenic. There were no grade 4 infections. Among the 11 (22%) patients who developed any-grade thrombocytopenia, none occurred within 2 weeks of a reported bleeding-related AE. One patient had thrombocytopenia overlapping with disease progression on therapy. Objective response rate for all patients was 86% (n=42), with 51% (n=25) who had complete response (CR/CRi; 12 achieved CR/CRi by month 7). At the completion of combination therapy (month 7), 39 patients had evaluable bone marrow assessments. Thirty (77%) had no histologic evidence of CLL in the bone marrow and 22 patients (56%) had attained bone marrow MRD-negativity. In longer follow up at any point during treatment for all 49 patients, 37 (75%) patients achieved complete marrow clearance and 28 (57%) achieved marrow MRD-negativity. Conclusions: Transient manageable neutropenia was the most common AE, with first onset usually seen within the first month of treatment and the onset of new neutropenia AEs decreased over time. No patients discontinued the study due to cytopenias. Patients were able to continue on study and high rates of response to treatment were observed. VEN given with rituximab achieved rapid and profound reductions in disease burden in peripheral blood and bone marrow. 77% of evaluable patients achieved morphologic clearance by month 7, and 57% were MRD-negative at any point on study. Figure 1 Figure 1. Disclosures Brander: TG Therapeutics: Research Funding; Gilead: Honoraria. Roberts:AbbVie: Research Funding; Servier: Research Funding; Janssen: Research Funding; Genentech: Research Funding; Genentech: Patents & Royalties: Employee of Walter and Eliza Hall Institute of Medical Research which receives milestone payments related to venetoclax. Ma:Pharmacyclics, LLC, an AbbVie Company: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Genentech: Consultancy, Honoraria, Speakers Bureau; Novartis: Research Funding; Xeme: Research Funding; AbbVie: Research Funding. Lash:AbbVie: Employment. Verdugo:AbbVie: Employment, Other: may own stock. Zhu:AbbVie Inc.: Employment, Other: may own stock. Kim:AbbVie: Employment. Seymour:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document