Expression of PIM Kinases in Reed-Sternberg Cells Fosters Immune Privilege and Tumor Cell Survival in Classical Hodgkin Lymphoma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 819-819
Author(s):  
Maciej Szydlowski ◽  
Monika Prochorec-Sobieszek ◽  
Anna Szumera-Cieckiewicz ◽  
Grazyna Hoser ◽  
Ewa Jablonska ◽  
...  

Abstract The classical Hodgkin lymphoma (cHL) is characterized by a presence of rare malignant Reed-Sternberg (RS) cells surrounded by abundant reactive infiltrate. Tumor RS cells express multiple cytokines, chemokines and immunoregulatory proteins, such as PD-L1 or galectin-1, that enhance recruitment of the infiltrating cells and allow malignant cells to escape from host immune surveillance. Since targeting these immunomodulatory molecules is a highly promising therapeutic strategy in cHL, identification of pathways and mechanisms orchestrating tumor immune evasion and supporting RS cell survival can further reveal targetable vulnerabilities of cHL. Expression of immunoregulatory proteins in cHL is modulated by tumor-specific activity of certain pro-survival transcription factors, such as NFκB and STATs. Since the activity of these transcription factors is modulated by oncogenic PIM1/2/3 serine/threonine kinases, we hypothesized that PIMs may support RS cell survival and foster their immune privilege. For these reasons, we investigated PIM1/2/3 expression in cHL and determined mechanisms underlying their expression. Furthermore, we assessed impact of PIM inhibition on expression of key factors engaged in development of the immunosuppressive microenvironment and HRS cell survival. Our analyses revealed that PIM1/2/3 are ubiquitously expressed in primary and cultured RS cell lines. At least one PIM isoform was expressed in each cell line and in 97% of 67 primary cHL biopsies. RS cells treated with JAK1/2/3 inhibitor exhibited reduced PIM1 and PIM2 levels. Genetic inhibition of canonical NFkB activity with IkB super-repressor or shRNA-mediated ablation of alternative NFkB pathway led to decrease of PIM2 and PIM3, suggesting that PIM-1/2/3 expresion in cHL depends at least in part on JAK-STAT and NFkB activity. To assess the role of PIM kinases in cell viability, we silenced expression of each PIM isoform (individually or simultaneously) in HDLM-2 cells. Knockdowns of individual PIM isoforms were associated with marked increased in remaining isoforms expression and were not associated with toxicity. In marked contrast, downregulation of all three isoforms increased cellular apoptosis by 17%. For this reason, for subsequent studies we used a newly developed pan-PIM inhibitor (SEL24-B489). The inhibitor was toxic to all cells with IC50 ranging from 3-5 µM. To determine mechanisms underlying toxicity, we assessed the activities of specific PIM substrates: 4EBP1, S6, and p65 (RelA). SEL24-B489 rapidly decreased PIM-dependent phosphorylation of these molecules in all tested cell lines. Furthermore, it reduced DNA binding activity of the NFκB-p65 complexes, indicating that PIM kinases modulate NFκB activity in cHL. For this reason, we next assessed the consequences of PIM inhibition on NFκB-dependent transcription. SEL24-B489 significantly downregulated mRNA of NFkB target genes associated with HRS cell survival and proliferation, such as Bfl-1, RelB and CD40. In cells treated with PIM inhibitor SEL24-B489 we also found markedly decreased expression NFkB-dependent cytokines and chemokines specifically shaping pro-tumoral microenvironment, such as IL-8, CCL5 and IL-13. In addition, cell lines exposed to SEL24-B489 treatment exhibited decreased expression of immunomodulatory PD-L1 and Gal-1 proteins. Finally, we investigated the efficacy of SEL24-B489 in vivo in the murine xenograft model using HDLM-2 cells. In contrast to animals exposed to vehicle alone, we observed inhibition of tumor growth by 95,8% in SEL24-B489-treated animals (p=0,0002). Consistent with the in vitro data, we observed strong downregulation of phospho-S6, GAL-1 and PD-L1 proteins in tumor sections from PIM inhibitor-treated animals. Taken together, we demonstrated that the oncogenic PIM-1/2/3 kinases are expressed in RS cells and their activity can be specifically blocked using a pan-PIM inhibitor SEL24-B489. PIM inhibition significantly reduced activity of specific PIM substrates and decreased the expression of NFκB-dependent pro-survival genes and key immunomodulatory proteins. These results highlight the pleiotropic activity of SEL24-B489 and indicate that PIM kinases are promising therapeutic targets in cHL. Disclosures Czardybon: Selvita S.A.: Employment. Galezowski:Selvita S.A.: Employment. Windak:Selvita S.A.: Employment. Brzozka:Selvita S.A.: Employment.

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3131
Author(s):  
Julia Paczkowska ◽  
Joanna Janiszewska ◽  
Adam Ustaszewski ◽  
Julia Bein ◽  
Marcin Skalski ◽  
...  

A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3326-3334 ◽  
Author(s):  
Alexey Ushmorov ◽  
Olga Ritz ◽  
Michael Hummel ◽  
Frank Leithäuser ◽  
Peter Möller ◽  
...  

Abstract Immunoglobulin production is impaired in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) in spite of functional clonal rearrangements. The presence of “crippling” mutations in coding and regulatory regions, as well as down-regulation of B-cell-specific transcription factors, has been suggested as a potential reason for the lack of immunoglobulin (Ig) chain gene transcription. We have investigated the impact of epigenetic silencing in suppressing Ig heavy (H)-chain expression. Chromatin immunoprecipitation (ChIP) was used to analyze transcription factor binding to octamer motifs present in the IgH regulatory regions. Transcription factors were bound to these motifs in control cell lines, however, they were absent in the cHL-derived cell lines KMH2, L1236, and L428. Ectopic expression of octamer-binding transcription factor (Oct2) and/or B-cell Oct binding protein/Oct-binding factor (BOB.1/OBF.1) did not result in any measurable binding to these sites. Increased histone 3 Lysine 9 (H3-K9) methylation was observed in the promoter region of the IgH locus in L428 and L1236 cells. This is a typical feature of heterochromatic, transcriptionally silent regions. Treatment of cHL-derived cell lines with the DNA demethylating agent 5-aza-2′-deoxycytidine (5-aza-dC) partially reactivated IgH transcription and affected chromatin modifications. Our results suggest an important role of epigenetic silencing in the inhibition of IgH transcription in HRS cells. (Blood. 2004;104:3326-3334)


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 706-706 ◽  
Author(s):  
Ewa Jablonska ◽  
Maciej Szydlowski ◽  
Emilia Bialopiotrowicz ◽  
Przemyslaw Kiliszek ◽  
Tomasz Sewastianik ◽  
...  

Abstract Introduction. In 1/3of diffuse large B-cell lymphoma (DLBCL) patients current treatment options are ineffective, underscoring the need for more effective targeted therapies. Simultaneous genetic ablation of PIM kinases (PIM-1/2/3) or their pharmacological inhibition induce apoptosis in DLBCL cell lines, providing proof of concept that these proteins are promising targets in this disease. To better understand mechanisms of toxicity of PIM inhibition in DLBCL, we investigated biochemical and biological consequences of PIM inhibition using novel pan-PIM inhibitor (SEL24-B489) in a panel of DLBCL cell lines in in vivo xenograft model. Methods. Protein expression and phosphorylation status of PIM substrates was assessed by immunobloting. Proliferation and apoptosis were assessed by MTS assay and PI/AnnexinV staining. Gene expression profiling was performed on Illumina HT-12 v4 Chip. NFkB target genes expression was assessed by Real-Time Quantitative PCR (qPCR). For xenograft studies, 9-11 weeks old SCID/beige CB17 mice were subcutaneously injected with 5x106 U2932 cells suspended in 0.1 ml mixture of PBS with Matrigel. When tumor volumes reached ~100 mm3, mice were randomized into uniform groups and subjected to the compound administration (50 mg/kg daily, BID, per os). Tumor volume was monitored every second day. Results. The newly developed pan-PIM inhibitor (SEL24-B489) was toxic to DLBCL cell lines in low-micromolar or sub-micromolar concentrations (IC50: 0,29 to 1,17µM). To determine mechanisms underlying toxicity of PIM inhibition in DLBCL, we first assessed the activity of 4EBP1 and ribosomal protein S6, proteins involved in protein translation. PIM inhibitor rapidly and uniformly decreased 4EBP1 and S6 phosphorylation in all tested DLBCL cell lines (DHL4, DHL6, Ly1, Ly7, Karpas 422, Pfeiffer, Toledo, U2932, HBL-1). Since PIM kinases have been shown to increase stability and/or activity of NFκB-p65 (RelA) and Myc, we assessed the abundance/activity of these transcription factors upon PIM inhibitor treatment. PIM inhibition led to downregulation of Myc protein in GCB DLBCL cell lines. Since Myc and PIMs cooperate in augmenting transcription of active genes, we assessed global RNA levels upon PIM inhibitor treatment. The RNA abundance in SEL24-B489-treated cells decreased by 22-37%. The underlying mechanism of the decrease in cellular mRNA content involved global inhibition of PIM-dependent histone H3 serine 10 (H3S10) phosphorylation and decreased phoshorylation of RNA polymerase II (serine 2). To test whether PIM inhibition also attenuates specifically NFκB-dependent transcription in DLBCL cell lines, we assessed gene expression profiles of vehicle- or SEL24-B489-treated HBL-1, U2932 and DHL4 cells. Following PIM inhibition, we observed significant downregulation of multiple validated NFκB target genes in HBL-1 and U2932 cells, but not in DHL4 cells. We further confirmed decreased transcript abundance of 4 NFκB target genes (NFKBIA, CD40, TNFAIP 3 and MIR 155) by qPCR. Since NFκB target gene expression in ABC-DLBCL is essential for their survival and can be specifically blocked with the BTK inhibitor ibrutinib, we hypothesized that simultaneous targeting of PIMs and BTK would synergistically inhibit NFkB activity and cell survival. To test this hypothesis, we incubated the ABC-DLBCL cell lines with the ibrutinib, SEL24-B489, or their combination. We identified synergistic growth inhibitory effects of the drug combination in ABC-DLBCL cell lines, with combination index (CI) of 0.51 and 0.2 for HBL-1 and U2932 cells, respectively. Finally, we investigated the efficacy of SEL24-B489 in vivo in the murine xenograft model using U2932 cells. In contrast to progressive tumor growth in animals exposed to vehicle alone, we observed marked inhibition of tumor growth (>90%) in SEL24-B489-treated mice. Conclusions. In conclusion, a novel pan-PIM inhibitor SEL24-B489 induces apoptosis of DLBCL cell lines in low/sub-micromolar concentrations and exhibits activity in a xenograft model. The mechanisms of SEL24-B489 toxicity include blocking of protein translation, induction of Myc degradation, decrease of RNA transcription and attenuation of NFκB activity. Moreover, we show marked synergy between the PIM inhibitor and ibrutinib. Hence, these results provide new insights into mechanism of action of PIM inhibitors and rationale for targeting PIM activity in DLBCLs. Disclosures Czardybon: Selvita S.A.: Employment. Galezowski:Selvita S.A.: Employment. Windak:Selvita S.A.: Employment. Golas:Selvita S.A.: Employment. Brzozka:Selvita S.A.: Employment. Juszczynski:Selvita S.A.: Other: member of Selvita Scientific Advisory Board.


2017 ◽  
Vol 35 ◽  
pp. 398-399
Author(s):  
M. Szydlowski ◽  
M. Prochorec-Sobieszek ◽  
A. Szumera-Ciećkiewicz ◽  
E. Derezińska ◽  
G. Hoser ◽  
...  

Blood ◽  
2017 ◽  
Vol 130 (12) ◽  
pp. 1418-1429 ◽  
Author(s):  
Maciej Szydłowski ◽  
Monika Prochorec-Sobieszek ◽  
Anna Szumera-Ciećkiewicz ◽  
Edyta Derezińska ◽  
Grażyna Hoser ◽  
...  

Key Points PIM kinases are ubiquitously expressed in RS cells of cHL. PIM inhibition decreases NFκB and STAT3/5 activity, cell viability, and expression of immunoregulatory proteins PD-L1/2 and galectin-1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Esther K. Elliott ◽  
Lloyd N. Hopkins ◽  
Robert Hensen ◽  
Heidi G. Sutherland ◽  
Larisa M. Haupt ◽  
...  

MicroRNAs (miRNAs) are well known for their ability to regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. In various cancers, miRNAs regulate gene expression by altering the epigenetic status of candidate genes that are implicated in various difficult to treat haematological malignancies such as non-Hodgkin lymphoma by acting as either oncogenes or tumour suppressor genes. Cellular and circulating miRNA biomarkers could also be directly utilised as disease markers for diagnosis and monitoring of non-Hodgkin lymphoma (NHL); however, the role of DNA methylation in miRNA expression regulation in NHL requires further scientific inquiry. In this study, we investigated the methylation levels of CpGs in CpG islands spanning the promoter regions of the miR-17–92 cluster host gene and the TET2 gene and correlated them with the expression levels of TET2 mRNA and miR-92a-3p and miR-92a-5p mature miRNAs in NHL cell lines, tumour samples, and the whole blood gDNA of an NHL case control cohort. Increased expression of both miR-92a-3p and miR-92a-5p and aberrant expression of TET2 was observed in NHL cell lines and tumour tissues, as well as disparate levels of dysfunctional promoter CGI methylation. Both miR-92a and TET2 may play a concerted role in NHL malignancy and disease pathogenesis.


Author(s):  
A Ustaszewski ◽  
J Paczkowska ◽  
J Janiszewska ◽  
S Hartmann ◽  
J Bein ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1258
Author(s):  
Tetsuya Sekita ◽  
Tesshi Yamada ◽  
Eisuke Kobayashi ◽  
Akihiko Yoshida ◽  
Toru Hirozane ◽  
...  

Background: The treatment of patients with metastatic synovial sarcoma is still challenging, and the development of new molecular therapeutics is desirable. Dysregulation of Wnt signaling has been implicated in synovial sarcoma. Traf2-and-Nck-interacting kinase (TNIK) is an essential transcriptional co-regulator of Wnt target genes. We examined the efficacy of a small interfering RNA (siRNA) to TNIK and a small-molecule TNIK inhibitor, NCB-0846, for synovial sarcoma. Methods: The expression of TNIK was determined in 20 clinical samples of synovial sarcoma. The efficacy of NCB-0846 was evaluated in four synovial sarcoma cell lines and a mouse xenograft model. Results: We found that synovial sarcoma cell lines with Wnt activation were highly dependent upon the expression of TNIK for proliferation and survival. NCB-0846 induced apoptotic cell death in synovial sarcoma cells through blocking of Wnt target genes including MYC, and oral administration of NCB-846 induced regression of xenografts established by inoculation of synovial sarcoma cells. Discussion: It has become evident that activation of Wnt signaling is causatively involved in the pathogenesis of synovial sarcoma, but no molecular therapeutics targeting the pathway have been approved. This study revealed for the first time the therapeutic potential of TNIK inhibition in synovial sarcoma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 19-19 ◽  
Author(s):  
Marc A. Weniger ◽  
Ingo Melzner ◽  
Christiane K. Menz ◽  
Silke Wegener ◽  
Alexandra J. Bucur ◽  
...  

Abstract The suppressors of cytokine signaling (SOCS) are critically involved in the regulation of cellular proliferation, survival, and apoptosis via cytokine-induced JAK/STAT signaling. SOCS-1 silencing by aberrant DNA methylation contributes to oncogenesis in various B-cell neoplasias and carcinomas. Recently, we showed an alternative loss of SOCS-1 function due to deleterious SOCS-1 mutations in a major subset of primary mediastinal B-cell lymphoma (PMBL) and in the PMBL line MedB-1, and a biallelic SOCS-1 deletion in PMBL line Karpas1106P (BLOOD, 105, 2535–42, 2005). For both cell lines our previous data demonstrated retarded JAK2 degradation and sustained phospho-JAK2 action leading to enhanced DNA binding of phospho-STAT5. Here we analysed SOCS-1 in laser-microdissected Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). We detected SOCS-1 mutations in HRS cells of eight of 19 cHL samples and in three of five Hodgkin lymphoma (HL)-derived cell lines by sequencing analysis. Moreover, we found a significant association between mutated SOCS-1 of isolated HRS cells and nuclear phospho-STAT5 accumulation in HRS cells of cHL tumor tissue (p<0.01). Collectively, these findings support the concept that PMBL and cHL share many overlapping features, and that defective tumor suppressor gene SOCS-1 triggers an oncogenic pathway operative in both lymphomas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4722-4722
Author(s):  
Johan H Gibcus ◽  
Lu Ping Tan ◽  
Rikst Nynke Schakel ◽  
Geert Harms ◽  
Peter Moeller ◽  
...  

Abstract MicroRNAs (miRNAs) are 19–25 nucleotide long RNA molecules derived from precursor genes that inhibit the expression of target genes by binding to their 3′ UTR region. Expression of miRNAs is often tissue specific and miRNA profiling has shown specific miRNA expression patterns in both B-cell development and lymphomagenesis. Hodgkin lymphoma is derived from pre-apoptotic germinal center B-cells, although a general loss of B cell phenotype is noted. Using quantitative RT-PCR and miRNA microarray, we determined the miRNA profile of HL and compared this with the profile of a panel of B-cell non-Hodgkin lymphomas (NHL). The two methods showed a very good correlation for the expression levels of the individual miRNAs. Using a large panel of cell lines, we confirmed differential expression between HL and other B-cell lymphoma derived cell lines for 27 miRNAs. The HL specific miRNAs included miR-155, miR-21 and miR-106b seed family members miR-17-5p, miR-20a, miR-93, miR-106a and miR- 106b. Next, we performed target gene validation of predicted target genes for miR-17-5p, which is highly expressed in HL. Using luciferase reporter assays with stabilized anti-sense miR17-5p oligonucleotides, we showed that GPR137B, RAB12 and RBJ are likely miR-17-5p target genes in two different HL cell lines. Previous publications indicated that miR-106b seed family members negatively regulate the cyclin-dependent kinase inhibitor 1A (p21/CIP1) resulting in cell cycle arrest at G1. Consistent with these findings, we show that the miR-106b family members are highly expressed in L428, whereas p21 is not. However, inhibition of the miR-106b seed family members in L428 does not result in elevated p21 protein expression. Furthermore, there is no cell cycle arrest, growth reduction or increase in cell death and apoptosis after inhibition of the miR-106b seed family members. Thus, we conclude that blocking of the miR-106b seed family members does not necessarily lead to indiction of p21 protein. This suggests an additional regulatory layer of p21 expression in L428 cells.


Sign in / Sign up

Export Citation Format

Share Document