scholarly journals MYC Inhibition and TP53 Activation Synergistically Suppress Immune Checkpoint Ligand PD-L1 Expression in AML Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1667-1667
Author(s):  
Joshua B. Bland ◽  
William T. Tse

Abstract Expression of immune checkpoint ligands is a mechanism that many tumors use to escape attack by host immune cells. PD-L1, the ligand for checkpoint receptor PD-1 on T cells, is often expressed on tumor cells. Engagement of PD-1 on T cells by PD-L1 on tumor cells attenuates T-cell receptor signaling and suppresses anti-tumor response. PD-1 and PD-L1 blocking antibodies have been implemented clinically as treatment for many cancers, but the pattern of PD-L1 expression on AML is not well characterized. To answer this question, we studied how PD-L1 expression on AML is regulated under in vitro conditions that simulate the leukemia-host microenvironment. We examined surface expression of PD-L1 by flow cytometry on 4 AML lines, THP-1, KG1, KG1a, HL60, and a CML line, K562. Under basal conditions, these lines expressed no or low levels of PDL1. The AML cells were then subjected to conditions that mimic the leukemia-host microenvironment. AML cells were stained with the green fluorescent dye CFSE and co-cultured with Ficoll-separated PMNCs from healthy donors. After a day of co-culture, expression of PD-L1 was analyzed on AML cells and PD-1, CD25 and CD69 activation markers on PMNCs. Only a small increase of PD-L1, up to 2-4 fold, was seen on AML cells under this condition. To simulate the pro-inflammatory milieu in the tumor microenvironment, anti-CD3/CD28 microbeads were then added in culture to activate T cells. We observed a marked up-regulation of PD-L1 on AML cells, up to 5-60 fold, plus prominent expression of PD-1, CD25 and CD69 on T cells. These findings were confirmed by an alternative method of T cell activation in which AML cells were first coated with an anti-CD123 antibody, linked to anti-CD3/CD28 antibodies via a biotin-streptavidin bridge, and then cultured with PMNCs. To test whether pro-inflammatory cytokines were the sole inducers of PD-L1 expression, AML cells were treated with IFN-γ or TNF-α alone. IFN-γ treatment enhanced PD-L1 expression by 2-10 fold, while TNF-α showed a <2-fold increase. These results show that expression of PD-L1 on AML is dynamically regulated through interaction with activated T cells, by multiple mechanisms including cytokine production and cell-cell interaction. MYC has been shown to regulate PD-L1 expression on T-ALL and solid tumors (Science 2016; 352:227). We asked whether MYC inhibition would suppress PD-L1 on AML. AML and PMNCs were co-cultured in the presence of anti-CD3/CD28 beads, with JQ1, a BET bromodomain inhibitor that blocks MYC expression. JQ1 inhibited PD-L1 expression by >90%. Dose-effect titration showed sigmoidal curves with ED50 of 0.03 to 0.1 μM for the 5 AML lines. Treatment with another MYC inhibitor, CPI-203, yielded similar results. These observations indicate that MYC inhibition can suppress PD-L1 expression on AML induced by activated T cells. TP53 has been shown to regulate PD-L1 expression on non-small cell lung cancer (JNCI 2016; 108:djv303). We asked whether TP53 activation in AML would also affect PD-L1 expression. Since the AML lines we used did not express wild-type TP53, we overexpressed TP53 in these cells by transfecting with a TP53-GFP plasmid. Expression of TP53 in the cells decreased PD-L1 levels by >80%. Treatment of the cells with pifithrin, an inhibitor that blocks trans-activating function of TP53, did not rescue PD-L1 expression, suggesting that the effect of TP53 on PD-L1 expression is independent of its canonical trans-activating pathway. We asked if MYC and TP53 would synergistically affect PD-L1 expression on AML. We transfected AML cells with the TP53-GFP plasmid and co-cultured the cells with PMNCs and anti-CD3-/CD28 beads, in the presence or absence of JQ1. We found that JQ1 treatment of TP53-transfected cells further decreased PD-L1 expression by another 15%, indicating that MYC and TP53 independently and synergistically affect PD-L1 expression on AML. In summary, PD-L1 expression on AML cells is dynamically up-regulated upon interaction with activated T cells and suppressed by perturbation of the MYC and TP53 pathways. These findings have implications in the use of immune effector cell therapy against AML, since the activated effector cells could up-regulate PD-L1 expression on target cells and attenuate anti-leukemia effects. MYC inhibitors and TP53 activators could potentially be used in combination to suppress PD-L1 up-regulation and abrogate the ability of AML cells to escape host immune elimination. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 813-813 ◽  
Author(s):  
Diana Campillo-Davo ◽  
Fumihiro Fujiki ◽  
Johan M.J. Van den Bergh ◽  
Evelien L. Smits ◽  
Haruo Sugiyama ◽  
...  

Abstract In adoptive cellular immunotherapy, T cells can be genetically engineered to express a novel T-cell receptor (TCR) that recognizes a tumor-associated antigen. However, mispairing between transgene and endogenous TCR chains may result in a reduction of transgene TCR expression and potentially harmful off-target reactivities. Here, we sought to develop a novel clinically safe strategy to promote transgene expression of a Wilms' tumor 1 (WT1)-specific TCR by Dicer-substrate small interfering RNA (DsiRNA)-mediated silencing of the endogenous TCR, using a double electroporation protocol. First, we isolated and cloned an HLA-A*0201-restricted WT1 peptide-specific TCR derived from a leukemia patient who demonstrated clinical benefit after receiving a WT1-targeted DC vaccine. Next, we produced a codon-optimized TCR sequence from the wild-type TCR construct and both TCR mRNAs were generated by in vitro transcription. TCR expression levels were validated by electroporation of TCR-deficient Jurkat J76.7 cells stably transduced with CD8 and an NFAT-driven GFP reporter gene. TCR functionality was confirmed by high expression levels of GFP (70% GFP+cells) upon TCR signaling after co-culture with WT1 peptide-pulsed T2 cells. In order to suppress the translation of endogenous TCR mRNA in CD8+ T cells, DsiRNA duplexes were designed to specifically target the constant regions of wild-type TCR α- and β-chains, but not the codon-optimized TCR. We further developed a double electroporation protocol combining DsiRNA and TCR mRNA transfection in which DsiRNA electroporation was performed 24 hours prior to TCR mRNA electroporation. Our results show more than 2-fold increase in WT1-specific TCR expression by HLA-A2/WT1 tetramer staining after DsiRNA treatment as compared to TCR mRNA electroporation only. This specific TCR expression was maintained at least 5 days after TCR mRNA electroporation in resting peripheral blood CD8+ lymphocytes from healthy donors. The enhanced TCR expression in DsiRNA-transfected CD8+T cells was also correlated with an increase of epitope recognition as shown by interferon (IFN)-γ ELISpot. To determine the killing capacity of DsiRNA/TCR mRNA-transfected CD8+ T cells against epitope-bearing target cells, we performed a flow cytometry-based cytotoxicity assay using WT1 peptide-pulsed T2 cells. Specific cytotoxicity, which was already present in WT1 TCR-transfected cells, was significantly enhanced in TCR mRNA-electroporated T cells following suppression of the endogenous TCR expression by DsiRNA treatment. Accordingly, DsiRNA-treated TCR mRNA transfected CD8+T cells presented higher levels of CD137 and CD69 activation markers and secretion of cytokines (IFN-γ and tumor necrosis factor-α), granzyme B, and perforin upon TCR triggering as compared to the non-DsiRNA treated T cells. In summary, we show a marked enhancement of transgene WT1-specific TCR expression upon silencing of the endogenous TCR using DsiRNA electroporation prior to TCR mRNA electroporation. Importantly, this enhancement in TCR expression was correlated with a significant increase in WT1-specific CD8+ T-cell killing activity, expression of CD69 and CD137 activation markers and cytokine secretion after recognition of WT1 peptide-bearing target cells. These results pave the way for developing a clinically safer strategy for T cell-based adoptive immunotherapy of patients with WT1-expressing malignancies. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Ganapathy Sriram ◽  
Lauren Milling ◽  
Jung-Kuei Chen ◽  
Wuhbet Abraham ◽  
Erika D. Handly ◽  
...  

ABSTRACTInhibition of immune checkpoints has shown promising results in the treatment of certain tumor types. However, the majority of cancers do not respond to immune checkpoint inhibition (ICI) treatment, indicating the need to identify additional modalities that enhance the response to immune checkpoint blockade. In this study, we identified a tumor-tailored approach using ex-vivo DNA damaging chemotherapy-treated tumor cells as a live injured cell adjuvant. Using an optimized ex vivo system for dendritic cell-mediated T-cell IFN-γ induction in response to DNA-damaged tumor cells, we identified specific dose-dependent treatments with etoposide and mitoxantrone that markedly enhance IFN-γ production by T-cells. Unexpectedly, the immune-enhancing effects of DNA damage failed to correlate with known markers of immunogenic cell death or with the extent of apoptosis or necroptosis. Furthermore, dead tumor cells alone were not sufficient to promote DC cross-presentation and induce IFN-γ in T-cells. Instead, the enhanced immunogenicity resided in the fraction of injured cells that remained alive, and required signaling through the RIPK1, NF-kB and p38MAPK pathways. Direct in vivo translation of these findings was accomplished by intra-tumoral injection of ex vivo etoposide-treated tumor cells as an injured cell adjuvant, in combination with systemic anti-PD1/CTLA4 antibodies. This resulted in increased intra-tumoral CD103+ dendritic cells and circulating tumor antigen-specific CD8+ T-cells, leading to enhanced anti-tumor immune responses and improved survival. The effect was abrogated in BATF3-deficient mice indicating that BATF3+ DCs are required for appropriate T-cell stimulation by live but injured DNA-damaged tumor cells. Notably, injection of the free DNA-damaging drug directly into the tumor failed to elicit such an enhanced anti-tumor response as a consequence of simultaneous damage to dendritic cells and T-cells. Finally, the DNA damage induced injured cell adjuvant and systemic ICI combination, but not ICI alone, induced complete tumor regression in a subset of mice who were then able to reject tumor re-challenge, indicating induction of a long-lasting anti-tumor immunological memory by the injured cell adjuvant treatment in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4132-4132
Author(s):  
Marzia Palma ◽  
Giusy Gentilcore ◽  
Fariba Mozaffari ◽  
Kia Heimersson ◽  
Barbro Näsman-Glaser ◽  
...  

Abstract Background CLL patients (pts) have impaired humoral and cellular immune functions, which is largely due to profound defects of T-cells. Regulation and activation of T lymphocytes depend not only on T cell receptor signaling but also on co-signaling receptors delivering either inhibitory or stimulatory signals, known as immune checkpoints. CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) is transiently expressed on activated T cells, binding the same ligands as CD28, inhibiting T-cell activation. Similarly, programmed cell death protein 1 (PD-1) is expressed on activated CD4+ and CD8+ T cells inhibiting T-cell functions upon binding to the ligands B7-H1 (PD-L1, CD274) and B7-DC (PD-L2, CD273). CD137 is an inducible costimulatory receptor expressed by activated T cells. Dysregulated expression of immune checkpoint receptors on T cells of CLL pts may have an impact on T-cell responsiveness and might be a mechanism for the immune deficiency in the disease. Aim To evaluate the expression of the immune checkpoint molecules CTLA-4, PD-1 and CD137 as well as of the cell proliferation marker Ki67, the activation marker CD69 and of CD103, a marker expressed on regulatory T cells, in T cells from CLL pts in different disease phases. Methods Peripheral blood samples were obtained from 69 CLL pts and 13 healthy control donors (HD). Pts were sub-grouped according to disease phase: indolent vs progressive (i.e. fulfilling criteria for active disease). The expression of CTLA-4, PD-1, PD-L1, CD69, CD103, CD137 and Ki-67 was assessed by flow-cytometry on CD4+ and CD8+ T cells. We also analysed the change in expression of these markers on T cells after 72 hours of PHA stimulation. Results CLL pts (n=17) had a significanty higher percentage of proliferating (Ki67+) CD3+ cells compared to HD (n=7) (median 3.7% in progressive vs 1.7% in indolent CLL vs 0.9% in HD, p=0.004 and p=0.04, respectively) (Fig.1). Progressive CLL pts had a significantly higher percentage Ki67+ CD4+ compared to indolent pts as well as HD (p=0.007 and p=0.001, respectively). Both indolent and progressive pts had higher percentage of Ki67+ CD8+ T cells compared to HD (p=0.01 and p=0.03, respectively). The percentage of CTLA-4+ CD4+ and CTLA-4+ CD8+ cells was low in CLL pts as well as in HD. However, the percentage of PD-1+ CD4+ T cells was significantly higher in progressive (n=32) as compared to indolent (n=35) CLL pts (median 40.3% vs 23.3%, p<0.0001) and HD (n=13) (median 21.5%, p<0.0001) (Fig.2) and correlated positively to the white blood cell counts (WBC) at the time of testing (r=0.29, p=0.03), while no difference was found with regard to the percentage of PD-1+ CD8+ T cells. No difference was observed between CLL pts and HD regarding the expression of PD-L1 on T cells. Both the percentage of CD69+ CD4+ and CD137+ CD4+ T cells were significantly higher in progressive as compared to indolent disease and correlated positively to WBC while no difference was found seen in CD8+ T cells. The percentage of CD103+ T cells was significantly lower in progressive compared to and HD within both the CD4+ (p=0.02) and the CD8+ subpopulations (p=0.02). After 72-hrs of PHA stimulation, PD-1 and CTLA-4 expression increased in CD4+ and CD8+ cells to a similar extent in CLL pts and HD, while PD-L1 increased in HD but not in progressive CLL pts (p=0.03 and p=0.007 for CD4+ and CD8+ cells, respectively). CD69 expression increased to a similar extent in CLL pts and HD, while CD137 expression increased more in T cells from progressive pts compared to HD (p=0.03 and 0.01 for the CD4+ and CD8+ cells, respectively). No increase in CD103 on CD8+ T-cells was observed in CLL pts compared to HD (p=0.04 and p=0.01 for the indolent and progressive pts, respectively). Conclusions Progressive CLL pts have more proliferating (Ki67+) T cells in both the CD4+ and CD8+ compartments compared to HD. CD4+ T-cells in progressive CLL pts display an activated phenotype (CD69+) and express the immune co-stimulatory molecule CD137 at a significantly higher level compared to indolent pts and HD. Nevertheless, the expression of the inhibitory immune checkpoint molecule PD-1 is so high that it is reasonable to assume that these cells are heavily impaired in their immune functions. The differences observed in the expression of immune checkpoints and activation markers between CLL pts in different phases of the disease suggest that major changes occur in the CD4+ T-cell compartment during disease progression. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Hansson: Jansse Cilag: Research Funding. Österborg:Janssen, Pharmacyclics, Gilead: Consultancy, Research Funding; Novartis: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 778-778
Author(s):  
Xingmin Feng ◽  
Wanling Sun ◽  
Zhijie Wu ◽  
Zenghua Lin ◽  
Maile K Hollinger ◽  
...  

Abstract Tumor necrosis factor alpha (TNF-α) is a critical cytokine in systemic inflammation and a potent inducer of apoptotic cell death. Type 1 cytokines are involved in the pathogenesis of aplastic anemia (AA) and other bone marrow (BM) failure syndromes. Overproduction of interferon gamma (IFN-γ) and TNF-α from activated T cells or bone marrow cells has been proposed as a mechanism of BM failure. We hypothesized that inhibiting the production of TNF-α or blockade of the TNF-α signaling pathway would attenuate hematopoietic cell destruction in murine models of immune BM failure. Therefore, we tested the role of TNF-α in several mouse models of human AA, using C57BL/6 (B6) mice carrying germline deletions of TNF-α (TNF-α-/-) or its receptors including TNF-α receptor superfamily member 1a (TNF-rsf1a-/-), TNF-rsf1b-/-, and TNF-rsf1a-/-1b-/-as donors or recipients, respectively. Lymph node (LN) cells from both TNF-α-/- and TNF-α receptor knock out mice induced fatal BM failure with efficacy similar to LN cells from wild-type B6 donors when infused into CByB6F1 recipients that had received 5 Gy of total body irradiation (TBI), indicating that expression of TNF-α or TNF-α receptors on effector cells did not affect the development of BM failure. However, TNF-α-/- mice as recipients unexpectedly showed resistance to immune-mediated BM failure. Infusion of 5 million LN cells from MHC-mismatched FVB donors to 6.5 Gy TBI pre-conditioned TNF-α-/- recipients did not induce AA: the animals had normal or increased levels of WBC, RBC, platelets, and total BM cells relative to TBI-only TNF-α-/- mice; control wild-type B6 recipient mice developed severe pancytopenia and BM failure after LN infusion at 10 days (Fig. 1A&B). This result suggests that TNF-α production in the recipients had a role in immune attack by effector cells. When residual BM cells were cultured in vitro in cytokine-supplemented methylcellulose media, cells from wild-type BM failure mice, but not from TNF-α-/- recipient mice, showed a significant reduction in colony forming units relative to their TBI controls. By flow cytometry, Fas+ cells and Annexin V-binding cells were increased in BM of wild-type marrow failure mice relative to wild-type TBI controls, but no increase in Fas+ cells and Annexin V-binding cells was observed in TNF-α-/- mice that had received LN infusion. In parallel experiments, injection of FVB LN cells into sub-lethally-irradiated TNF-rsf1a-/-, TNF-rsf1b-/-, or TNF-rsf1a-/-1b-/- mice resulted in BM failure with declines in WBC and platelets as observed in wild-type B6 mice after FVB LN infusion. Plasma levels of both IFN-γ and TNF-α were markedly increased in all the wild-type B6 and TNF-α receptor knock out mice that developed BM failure, but not in TNF-α-/- recipient mice. These data suggest that depletion of TNF-α receptors could not attenuate immune-mediated BM destruction and that TNF-α did not exert its destructive effect on hematopooetic targets through the TNF-α/TNF-rsf1a and 1b pathways. We hypothesized that TNF-α might modulate T cell IFN-γ production to affect immune-mediated BM destruction. TNF-α is mainly produced by activated macrophages, while IFN-γ is mainly secreted by activated T cells. Blockade of either IFN-γ in effector cells or IFN-γ receptor in target cells ameliorates the development of BM failure (Chen J, Blood.2015;126:2621). To test this hypothesis, we first depleted macrophages from CByB6F1 recipient mice with liposomal clodronate before BM failure induction with TBI and B6 LN cell injection. Indeed, removal of macrophages attenuated BM destruction relative to BM failure mice pre-injected with PBS-loaded liposomes without macrophage depletion (Figure 1C). When we injected recombinant TNF-α daily i.v. for 1 week into TNF-α-/- recipients following TBI and FVB LN cell infusion, TNF-α-injected mice had decreased BM cellularity relative to mice that received TBI and LN infusion without TNF-α (Figure 1D). Remarkably, TNF-α injection increased intracellular IFN-γ expression in BM T cells as determined by flow cytometry, indicating that TNF-α was capable of stimulating T cells to secrete IFN-γ. In summary, our study reveals a critical role of TNF-α in target cells but not in effector cells, in the pathogenesis of immune-mediated BM failure by cell-cell "crosstalk" modulation of IFN-γ secretion. Disclosures Young: Novartis/GSK to institute: Research Funding.


Antibodies ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 25
Author(s):  
Violet Y. Tu ◽  
Asma Ayari ◽  
Roddy S. O’Connor

T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.


Author(s):  
Yan Yan ◽  
Wei Zhao ◽  
Wei Liu ◽  
Yan Li ◽  
Xu Wang ◽  
...  

Abstract Background Chemokine (C–C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. Methods We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C–C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. Results From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. Conclusions Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A12-A12
Author(s):  
Jun Zhou ◽  
Shuang Zhu ◽  
Hongjuan Zhang ◽  
Lei Zheng ◽  
Mingfa Zang ◽  
...  

BackgroundBispecific T cell engagers (BiTE) is a fast-growing class of immunotherapies. They are bispecific antibody that bind to T cell-surface protein (for example, CD3e) and a specific tumor associate antigen (TAA) on tumor cells, by which to redirect T cells against tumor cells in a MHC-independent manner. A successful example in the clinical is Blinatumomab, a BiTE antibody against CD3/CD19 approved in 2014 to treat acute lymphoblastic leukemia. Currently, many CD3-based BiTE are in clinical trials, including BCMAxCD3, Her2xCD3, CEAxCD3, and PSMAxCD3. To evaluate the efficacy of BiTE in vitro, human peripheral blood monocyte cells (hPBMC) are commonly being used as a source of T cells to co-culture with tumor cells. The disadvantage of using hPBMC is donor-to-donor variability and the availability of the original donor if a study needs to be repeated.MethodsTo overcome this, we proposed to replace hPBMC with T cells from human CD3e (hCD3) genetically engineered mouse models mice (GEMM) for in in vitro coculture assay. T cells were isolated from hCD3 GEMM mice using negative selection mouse T cell isolation kit. Conventional tumor cell lines or luciferase-engineered patient-derived-xenograft (PDX)-derived organoids (PDXO) expressing specific antigens are co-cultured with hCD3 T cells in 96-well plates in the presence of BiTE antibody.ResultsWe measured the killing of tumor cells using either flow cytometry or luciferase activity as readouts. To analyze tumor-reactivity of T cells to cancer cell line or organoids, IFN-gamma in the culture medium was measured and activation markers on T cells was assessed.ConclusionsOur data showed the feasibility of using humanized mice T cells as a replacement for hPBMCs to assess BiTE antibody in vitro. We are further validating the application of murine hCD3 T cells for in vivo models to test bispecific T cell engagers.


2006 ◽  
Vol 75 (3) ◽  
pp. 1154-1166 ◽  
Author(s):  
Laura H. Hogan ◽  
Dominic O. Co ◽  
Jozsef Karman ◽  
Erika Heninger ◽  
M. Suresh ◽  
...  

ABSTRACT The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of gamma interferon (IFN-γ)-producing LCMV-specific T cells in liver granulomas and increased local IFN-γ. Despite traffic of activated T cells that resulted in a CD8 T-cell-dominated granuloma, the BCG liver organ load was unaltered from control levels. In OT-1 T-cell-receptor (TCR) transgenic mice, ovalbumin (OVA) immunization or LCMV coinfection of BCG-infected mice induced CD8 T-cell-dominated granulomas containing large numbers of non-BCG-specific activated T cells. The higher baseline BCG organ load in this CD8 TCR transgenic animal allowed us to demonstrate that OVA immunization and LCMV coinfection increased anti-BCG protection. The bacterial load remained substantially higher than in mice with a more complete TCR repertoire. Overall, the present study suggests that peripherally activated CD8 T cells can be recruited to chronic inflammatory sites, but their contribution to protective immunity is limited to conditions of underlying immunodeficiency.


2002 ◽  
Vol 70 (10) ◽  
pp. 5695-5705 ◽  
Author(s):  
Peter L. W. Yun ◽  
Arthur A. DeCarlo ◽  
Charles Collyer ◽  
Neil Hunter

ABSTRACT Interleukin 12 (IL-12) is an efficient inducer and enhancer of gamma interferon (IFN-γ) production by both resting and activated T cells. There is evidence that human monocytes exposed to IFN-γ have enhanced ability to produce IL-12 when stimulated with lipopolysaccharide (LPS). In this study, it was demonstrated that LPS from the oral periodontal pathogen Porphyromonas gingivalis stimulated monocytes primed with IFN-γ to release IL-12, thereby enhancing IFN-γ accumulation in T-cell populations. P. gingivalis LPS was shown to enhance IL-12 induction of IFN-γ in T cells in a manner independent from TNF-α contribution. The levels of T-cell IL-12 receptors were not affected by P. gingivalis LPS and played only a minor role in the magnitude of the IFN-γ response. These data suggest that LPS from P. gingivalis establishes an activation loop with IL-12 and IFN-γ with potential to augment the production of inflammatory cytokines in relation to the immunopathology of periodontitis. We previously reported that the major cysteine proteinases (gingipains) copurifying with LPS in this organism were responsible for reduced IFN-γ accumulation in the presence of IL-12. However, the addition of the gingipains in the presence of LPS resulted in partial restoration of the IFN-γ levels. In the destructive periodontitis lesion, release of gingipains from the outer membrane (OM) of P. gingivalis could lead to the downregulation of Th1 responses, while gingipain associated with LPS in the OM or in OM vesicles released from the organism could have net stimulatory effects.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4422-4431 ◽  
Author(s):  
Georg Gruenbacher ◽  
Hubert Gander ◽  
Andrea Rahm ◽  
Walter Nussbaumer ◽  
Nikolaus Romani ◽  
...  

Abstract CD56+ human dendritic cells (DCs) have recently been shown to differentiate from monocytes in response to GM-CSF and type 1 interferon in vitro. We show here that CD56+ cells freshly isolated from human peripheral blood contain a substantial subset of CD14+CD86+HLA-DR+ cells, which have the appearance of intermediate-sized lymphocytes but spontaneously differentiate into enlarged DC-like cells with substantially increased HLA-DR and CD86 expression or into fully mature CD83+ DCs in response to appropriate cytokines. Stimulation of CD56+ cells containing both DCs and abundant γδ T cells with zoledronate and interleukin-2 (IL-2) resulted in the rapid expansion of γδ T cells as well as in IFN-γ, TNF-α, and IL-1β but not in IL-4, IL-10, or IL-17 production. IFN-γ, TNF-α, and IL-1β production were almost completely abolished by depleting CD14+ cells from the CD56+ subset before stimulation. Likewise, depletion of CD14+ cells dramatically impaired γδ T-cell expansion. IFN-γ production could also be blocked by neutralizing the effects of endogenous IL-1β and TNF-α. Conversely, addition of recombinant IL-1β, TNF-α, or both further enhanced IFN-γ production and strongly up-regulated IL-6 production. Our data indicate that CD56+ DCs from human blood are capable of stimulating CD56+ γδ T cells, which may be harnessed for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document