scholarly journals Inflammation-Produced TNFα± Protects Hematopoietic Stem Cells from Necroptosis via Canonical NF-κB Pathway

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 631-631
Author(s):  
Masayuki Yamashita ◽  
Emmanuelle Passegué

Abstract Chronic inflammation is associated with bone marrow (BM) failure, aging and hematological malignancies. TNFα is a major pro-inflammatory cytokine overproduced in many hematological diseases, which is also known as a prototypical death ligand that can trigger programmed cell death in effector cells. Hematopoietic stem cells (HSCs: Lin-cKit+Sca1+Flk2-CD48-CD150+) are highly responsive to an altered cytokine milieu in the BM, and show unique response to cell death stimuli compared to downstream progenitors. Yet, how TNFα regulates HSCs and downstream progenitors remains controversial. In vitro treatment with TNFα revealed that HSCs were totally resistant to TNFα-induced cell death regardless of the dose (1 ng/ml ~ 10 μg/ml) in cytokine-rich conditions, although they become somewhat susceptible in cytokine-poor conditions, in contrast to granulocyte-macrophage progenitors (GMPs: Lin-cKit+Sca1-FcγR+CD34+) that were killed by TNFα exposure in both conditions. Mechanistically, TNFα induced a stronger activation of canonical NF-κB in HSCs than GMPs, with higher NF-κB-GFP reporter activity and more robust nuclear translocation of p50 and p65. Pharmacological blockade of canonical NF-κB with the IKKβ inhibitor BMS-345541 rendered HSCs partially susceptible to TNFα-induced cell death, while deficiency for p65, but not p50, resulted in complete HSC susceptibility to TNFα-mediated cell killing. Remarkably, we discovered that necroptosis, but not apoptosis, was the dominant cell death pathway in HSCs that had partial blockade of canonical NF-κB. HSCs with kinase-inactive RIPK1, RIPK3 deficiency or MLKL deletion all exhibited complete resistance to TNFα-mediated killing in IKKβ inhibited conditions, whereas HSCs deficient for caspase-8, BID, or BAK/BAX showed comparable susceptibility. In contrast, complete blockade of NF-κB through p65 deletion activated both apoptosis and necroptosis pathways, and could only be rescued by treatment with a combination of the pan-caspase inhibitor zVAD-fmk and RIPK1 inhibitor GSK'963. By contrast, TNFα-induced GMP death could not be rescued by either apoptosis or necroptosis inhibition, or a combination of both. To gain more insights into the molecular mechanism driving the differential response to TNFα, we performed RNA-seq-based whole transcriptome analyses of HSCs and GMPs treated with TNFα either in vitro or in vivo. We extracted cell-specific signatures of TNFα exposure in HSCs (62 genes) and GMPs (51 genes), which correspond to genes upregulated across all types of TNFα treatment (FDR<0.1, >3-fold). Notably, we identified cIAP2, a critical regulator for pro-survival effect in TNFα pathway, as one of the 44/62 unique genes upregulated in TNF-exposed HSCs. Quantitative RT-PCR analyses confirmed that TNF-exposed HSCs upregulate cIAP2 in a p65-dependent manner, and treatment with the cIAP inhibitor LCL-161 completely sensitized HSCs to TNFα-induced cell death even with intact p65 nuclear translocation. By contrast, TNFα-exposed GMPs showed a signature of cell death pathway activation and pro-inflammatory mediators. Finally, we investigated the effect of TNFα on hematopoiesis in vivo. Intravenous injection with TNFα (3x 2 μg every 12 hours, harvest 24 hours later) significantly reduced the absolute number of GMPs, but not HSCs. Importantly, canonical NF-κB was quickly activated in HSCs upon each TNFα injection but was desensitized 24 hours later. As a consequence, we observed a striking reduction in engraftment capacity of TNFα-exposed HSCs that was due in large part to necroptosis killing resulting from NF-κB desensitization, and was rescued by RIPK3 deficiency. Strikingly, chronic inflammation induced by repeated poly I:C injections (7x 10 mg/kg every 2 days) increased TNFα production and lead to NF-κB activation in HSCs. This was completely abrogated in HSCs isolated from poly I:C-treated TNFα-deficient mice, suggesting that TNFα is the major source of NF-κB activation in HSCs during chronic inflammation. As a result, we observed significant loss of HSC numbers in poly I:C-treated TNFα-deficient mice, which was completely rescued by RIPK3 deficiency. Taken together, our results demonstrate that HSCs are protected by TNFα-dependent canonical NF-κB activity from necroptosis during inflammation, which has significant implications for the treatment of patients with hematological malignancies and compromised NF-κB signaling. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3776-3776
Author(s):  
Lucia Catani ◽  
Daria Sollazzo ◽  
Francesca Ricci ◽  
Francesca Palandri ◽  
Nicola Polverelli ◽  
...  

Abstract Abstract 3776 The CD47 antigen is a transmembrane glycoprotein ubiquitously expressed on hematopoietic and non-hematopoietic cells. It serves as a receptor for Thrombospondin (TSP) and a ligand for signal regulatory protein-alpha (SIRP-alpha) receptor, acting, respectively, as a regulator of apoptosis and as antagonistic to phagocyte activity. Ligation of CD47 with antibodies, its natural physiological ligand TSP or the specific CD47-binding peptide 41NK induces apoptosis in nucleated blood cells. This apoptosis is characterized by mitochondrial damage and the exposure of phosphatydilserine on the outerleaflet of the plasma membrane. Interaction of SIRP-alpha with CD47 is important also for the regulation of phagocytosis. SIRP-alpha is an immunoglobulin superfamily member and is predominantly expressed in neurons, dendritic cells (DCs) and monocytes/macrophages. Phagocytes engulf foreign cells but not “self” in part because “self” cells express CD47 as a ligand for SIRP-alpha, which inhibits phagocytosis. Thus CD47 functions as a “don't eat me” signal. Based on studies in mice, a novel mechanism of platelet destruction involving the CD47/SIRP-alpha system has been recently suggested in Immune Thrombocytopenia (ITP). Specifically, it has been demonstrated that: 1) platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in immune thrombocytopenia in a mouse model; 2) interaction between platelet CD47 and macrophage SIRP-alpha is important in regulating normal platelet turnover and FcgammaR-mediated clearance of IgG-sensitized platelets; 3) CD47-deficient platelets have a shortened half-life in the circulation of CD47 wild-type mice and are also more sensitive to Fcgamma receptor-mediated clearance, both in vivo and in vitro. However, the role of CD47 pathway in the pathogenesis of human ITP has not yet been studied. Therefore, the main purpose of the present study was to evaluate whether alterations of this system (platelets/phagocytes) might play a pathogenetic role in human ITP. In particular, we investigated whether in ITP: i) platelets are more susceptible to CD47-induced cell death; ii) expression of CD47 on fresh and in vitro aged platelets is reduced; iii) the platelet phagocytic capacity of CD14-derived DCs and macrophages is differentially modulated in the presence or absence of antibodies against CD47 and SIRP-alpha. Phenotypical and functional analysis of the expression of CD47 on platelets and SIRP-αlpha on CD14-derived/circulating DCs and on CD14-derived macrophages was performed in 32 ITP patients. Patients were newly diagnosed (14 cases) or with persistent (15 cases) or chronic (3 cases) ITP. At the time of the study, patients with persistent or chronic ITP were off therapy by at least two months. None of the patients were splenectomized. The median platelet count at the time of the study was 49×109/L (range 14–98). We found that in healthy subjects CD47 expression increased in in vitro aged platelets and ligation of CD47 with anti-CD47 antibody induced a dose-dependent increase of platelet apoptosis. Immature and mature CD14-derived DCs and circulating myeloid DCs were strongly positive for SIRP-α. Conversely, we demonstrated that in ITP: 1) CD47 expression was unchanged in freshly isolated and in vitro aged platelets; 2) increased platelet apoptosis was not due to the activation of the CD47-induced cell death pathway, which instead was shown to be blocked; 3) the blockage of SIRP-αlpha on immature CD14-derived DCs or CD47 on platelets by specific antibodies failed to modify platelet uptake/phagocytosis of DCs; in contrast, targeting platelet CD47 with specific antibody significantly increases platelet phagocytosis of CD14-derived macrophages. In conclusion, our data demonstrate that in ITP the increased platelet clearance is not due to reduced CD47 expression on platelets. However, platelets from ITP patients are not healthy because 1) apoptosis is increased; 2) platelet apoptosis is independent from CD47 death signal; 3) CD47 expression is not modified by in vitro ageing/apoptosis. In addition, we show that the CD47 pathway plays a role in platelet phagocytosis of macrophages, but not in DCs. We conclude that in ITP patients platelet homeostasis is differentially modulated by the CD47 pathway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2733-2742 ◽  
Author(s):  
Cristina Mazzon ◽  
Achille Anselmo ◽  
Javier Cibella ◽  
Cristiana Soldani ◽  
Annarita Destro ◽  
...  

Abstract Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called “hematopoietic niches,” through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin−Sca1+c-Kit+ (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin−c-Kit+ cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn−/−). Agrin-deficient mice displayed in vivo apoptosis of CD34+CD135− LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.


2019 ◽  
Author(s):  
Dou Peng ◽  
Li Yiqun ◽  
Xie Wanqiu ◽  
Zhang Xiaoqing ◽  
Zhang Dandan ◽  
...  

AbstractAs a function unknown gene, C1orf109 is lower expression in various cells. Here, we reported that C1orf109L, the longest variant of C1orf109, which interacted with R-loop-regulating proteins to trigger R-loop, a three-stranded nucleic acid structure frequently mediated genome instability, accumulation. C1orf109L induce chronic DNA damage to promote P21 upregulation and strongly inhibits cell growth in vitro and in vivo by arresting the cell cycle in the G2 phase. With camptothecin (CPT), an R-loop activator, treatment, C1orf109L further triggers R-loop accumulation-induced DNA damage and promotes cell death by activating cell-death pathway. Furthermore, CPT treatment increases C1orf109L ubiquitination and turnover, which inhibits cell death and promotes the G0/G1 phase of the cell cycle. Therefore, our data illustrated the mechanisms underlying C1orf109L-related cell growth inhibition and provide feasibility and limitations for C1orf109L as a potential target for cancer therapy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 767-767
Author(s):  
Michal Abraham ◽  
Shiri Klein ◽  
Baruch Bulvik ◽  
Hanna Wald ◽  
Dvora Holam ◽  
...  

Abstract Background: Acute Myeloid Leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation and survival of hematopoietic stem and progenitor cells. The chemokine CXCL12 and its receptor CXCR4 are key players in the survival, bone marrow (BM) retention and the maintenance of AML blasts in their stemness state. CXCR4 overexpression is associated with poor prognosis in AML patients. Signaling activated through CXCR4 was shown to be detrimental by increasing survival of tumor cells and promoting resistance to therapy. Objective: To study the effect of the CXCR4-antagonist, BL-8040, on the survival of human AML blasts and to investigate the molecular mechanism by which inhibition of CXCR4 signaling leads to leukemia cell death. Methods: Human AML cell lines and human primary AML samples were used for in vitro studies. The in-vivo effect of BL-8040 was tested using the MV4-11, U-937, THP-1 cells and human primary AML cells engrafted in NOD scid gamma (NSG) mice. Results: We found that BL-8040 directly induced apoptosis of AML cells both in FLT3-ITD and FLT3-WT AML, in-vitro and in-vivo. BL-8040 treatment triggered mobilization of AML blasts from their protective BM microenvironment and induced their terminal differentiation, in-vitro and in-vivo. The apoptosis of AML cells induced by BL-8040 was attributed to miR-15a/miR-16-1 up-regulation resulting in down-regulation of their target genes BCL-2, MCL-1 and cyclin-D1. The increase in miR-15a/miR-16-1 levels directly induced AML cell death. Moreover, CXCR4 blockade by BL-8040 also inhibited survival signals by the ERK/AKT kinases enhancing the apoptosis effect. Survival of AML cells was found to be dependent on BCL-2 as demonstrated by the ability of the BCL-2 inhibitor, ABT-199, to induce dose dependent apoptosis in vitro. It was reported that the MCL-1 protein plays a key role in acquiring resistance to ABT-199. We found that BL-8040 synergizes with ABT-199 in inducing AML cell death. This could be attributed to the reduction of both, AKT/ERK and MCL-1 levels, by treatment with BL-8040. In addition, BL-8040 synergizes with the FLT3 inhibitor AC220 in the induction of AML cell death both in-vivo and in-vitro. The combined treatment of BL-8040 and AC220 was found to prolong survival and reduce minimal residual disease in-vivo. Interestingly, the combined treatment was also associated with a significant reduction in the expression of BCL-2 and ERK signaling. Conclusions: BL-8040 can be a potential therapeutic option in AML by targeting not only AML anchorage in the BM but also AML survival and differentiation. Our results demonstrate that BL-8040 in AML regulates the expression of miR-15a/16-1 and their target genes BCL-2, MCL-1 and cyclin-D1. Furthermore, these results indicate that the CXCR4 antagonist, BL-8040 may tip the balance toward cell death by down- regulating survival signals through miR-15a/16-1 pathway and inhibition of the ERK/AKT survival signaling cascade in AML cells. Our results provide rational for combination of BL-8040 with ABT-199 to overcome potential acquired resistance to ABT-199 in AML patients. The synergistic effect of BL-8040 with AC220 could provide a rational basis for the combination of BL-8040 with FLT3 inhibitors in FLT3-ITD AML patient population. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures Abraham: Biokine Therapeutics Ltd: Employment. Bulvik:Biokine Therapeutics Ltd: Employment. Wald:Biokine Therapeutics Ltd: Employment. Eizenberg:Biokine Therapeutics Ltd: Employment. Pereg:BioLineRx Ltd: Employment. Peled:Biokine Therapeutics Ltd: Consultancy, Employment.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
James W. Swann ◽  
Lada A. Koneva ◽  
Daniel Regan-Komito ◽  
Stephen N. Sansom ◽  
Fiona Powrie ◽  
...  

An important comorbidity of chronic inflammation is anemia, which may be related to dysregulated activity of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Among HSPCs, we found that the receptor for IL-33, ST2, is expressed preferentially and highly on erythroid progenitors. Induction of inflammatory spondyloarthritis in mice increased IL-33 in BM plasma, and IL-33 was required for inflammation-dependent suppression of erythropoiesis in BM. Conversely, administration of IL-33 in healthy mice suppressed erythropoiesis, decreased hemoglobin expression, and caused anemia. Using purified erythroid progenitors in vitro, we show that IL-33 directly inhibited terminal maturation. This effect was dependent on NF-κB activation and associated with altered signaling events downstream of the erythropoietin receptor. Accordingly, IL-33 also suppressed erythropoietin-accelerated erythropoiesis in vivo. These results reveal a role for IL-33 in pathogenesis of anemia during inflammatory disease and define a new target for its treatment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5119-5119
Author(s):  
Annie Levesque ◽  
Ann-Louise Savard ◽  
Denis-Claude Roy ◽  
Francine Foss ◽  
Christian Scotto

Abstract Although the risk of graft versus host disease (GvHD) can be reduced by improved donor-recipient matching and by the depletion of T cells before transplantation, GvHD still develops in 30–70% of allogeneic hematopoietic stem cell transplantation (HSCT) patients. The chronic phase of the disease (cGvHD), for which the pathogenesis is similar to autoimmune diseases, involves profound immune dysregulation leading to both immunodeficiency and autoimmunity. Standard therapies for cGvHD such as corticosteroids and immunosuppressants are associated with high toxicity and have demonstrated limited efficacy in patients with extensive disease. Extracorporeal photopheresis (ECP) has been shown by others in the clinic as a non-aggressive and beneficial alternative treatment for cGvHD, inducing Th1/Th2 immunomodulation that restores immunological tolerance. Celmed has developed an alternative approach to eliminate immunoreactive T cells using the Theralux™ photodynamic cell therapy (PDT) system based on the use of the rhodamine-123 derivative TH9402 illuminated ex vivo with a visible light source (λ =514nm). It has been suggested that the apoptotic cells, when returned to the patient, may be able to modulate the immune system as seen with other ECP methods. We aimed to evaluate in vivo and in vitro the possibility of also using the Theralux™ system in the ECP setting. A preliminary mouse model suggested that splenic T cells pre-treated with the Theralux™ system were able to induce an improvement of overall survival (p<0.05) in mice with acute GvHD. Additionally, we developed a simplified PDT process and conducted a series of experiments with peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. These studies have shown that the intra- and inter-donor variability in TH9402 incorporation are very low (~5% and 10%, respectively). A dose-effect study has shown a relationship of the PDT conditions with the levels of cell death, allowing significant control of the level of apoptosis induced. Phenotypic analyses have shown that this process results in an increase of AnnexinV positive cells as well as a decrease in the absolute number of CD3+ cells, CD19+/CD20+ cells and CD14+ cells and an increase in CD11c+ cells. This would suggest that apoptosis could be induced in both autoreactive T and B cells which could potentially stimulate an immune response against them. Moreover, the increase in CD11c+ cells combined with the decrease in CD14+ cells could reflect the maturation of macrophages into dendritic cells that are very potent antigen presenting cells. The mechanism by which these specific PDT conditions induce cell death is still under investigation but preliminary studies have shown that the cell death in unselected resting PBMCs may be caspase-independent. Finally, the evaluation of the effect of PDT on samples from cGvHD patients also demonstrated the capacity of this treatment strategy to induce apoptosis in these cells. Based on these data, we intend to begin a pilot clinical study evaluating two controlled PDT conditions inducing different levels of apoptosis in order to assess the safety and biological effect of the Theralux™ ECP system to treat patients with cGvHD.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 920-920
Author(s):  
Todd A. Fehniger ◽  
Sheng F. Cai ◽  
Xuefang Cao ◽  
Andrew J. Bredemeyer ◽  
Rachel M. Presti ◽  
...  

Abstract NK cells predominantly utilize the granule exocytosis pathway to kill virus-infected and malignant target cells. Current paradigms suggest that resting NK cells have pre-formed granules containing granzymes A, B, and perforin and are ready to kill targets immediately upon proper recognition by NK receptors. Here, we report that resting murine NK cells in the spleen exhibit poor cytotoxicity (5.4±1.6% target cell death, 20:1 E:T ratio and 4 hour incubation), compared with cytokine-activated (IL-15, 48 hours) splenic NK cells (59.7±10.6% target cell death), against the RMAS tumor cell line in vitro as measured by a flow-based killing assay. In addition, using intracellular flow cytometric analysis with monoclonal antibodies specific for granzymes A, B, and perforin, we find that resting murine NK cells express abundant granzyme A (86.2±1.9% positive), but little or no granzyme B (4.4±5.4% positive) or perforin (2.6±1.8% positive). Activation of murine NK cells with IL-15 induces robust expression of both perforin (59.1±2.0% positive) and granzyme B (91.5±7.9% positive), which correlates with increased cytotoxicity. Further, granzyme B cluster −/− (26±6.7% target cell death) and perforin −/− (5.7±1.3% target cell death) NK cells have poor cytotoxicity in vitro despite IL-15 activation. Poly I:C simulates RNA virus infection and activates NK cell cytotoxicity in vivo through TLR3 and cytokine cascades. NK cell granzyme B and perforin expression is induced in vivo 24 hours after poly I:C injection, correlating with increased in vitro NK killing of tumor targets. In wild type mice infected with murine cytomegalovirus (MCMV), NK cell expression of both perforin (83.5±4.9% positive) and granzyme B (89.3±2.1% positive) is upregulated in the spleen, peaking 2–4 days post-infection and returning to baseline by 8 days post-infection. In addition, MCMV titers are significantly elevated at day 3 post-infection in both granzyme B cluster −/− (P<0.01) and perforin −/− (P<0.01) mice, compared to wild type mice. Moreover, survival following MCMV infection was significantly lower in granzyme B cluster −/− and perforin −/− mice, compared with wild type mice (P<0.001, see survival curve). Thus, our findings show that murine NK cells require the activation of granzyme B and perforin to become potent cytotoxic effectors. We also demonstrate for the first time that granzyme B is critical for early host defense against MCMV. These findings explain the long-standing observation that murine NK cells require prior activation for potent natural killing of tumor targets in vitro. Further, this requirement for activation-dependent granzyme B and perforin expression in NK cells may influence outcomes in murine models of innate immune anti-tumor and anti-viral responses. Figure Figure


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1256-1256
Author(s):  
Yulan Qing ◽  
Stanton L. Gerson

Abstract Genomic integrity is essential for organism development and longevity and in large part is mediated by DNA repair proficiency. Non-homologous end-joining (NHEJ) is a specific pathway essential for DNA double-strand break repair in all cells and VDJ processing in B and T cells; and it is crucial for maintenance of mammalian genome. We hypothesize that NHEJ is also critical for hematopoietic stem cells (HSC) maintenance and function. Ku70 is a key component of the NHEJ pathway; Ku70-deficient mice are hypersensitive to radiation and show a leaky SCID phenotype. Ku70-deficient mice were used to assess the importance of NHEJ pathway in HSC function. Ku70-deficient mice have decreased bone marrow cells (BMC), and significant reductions in the frequency of colony-forming units in culture (CFU-C) in the presence of cytokines including IL-3, IL-6, SCF and Epo. SKL (Sca1+, c-Kit+, Lin−) cells from Ku70-deficeint mice showed a similar proliferation rate compared with SKL cells from WT mice when cultured in vitro in the presence of cytokines; single cell culture experiment showed that SKL cells from Ku70-deficient mice and WT mice have similar clonogenic ability. Thus, Ku70-deficient SKL cells retain proliferation capacity although there is a deficiency in overall hematopoietic homeostasis. To address Ku70-deficient HSC function in vivo, Ku70-deficient BMCs were serially transplanted into lethally irradiated congenic wild-type mice. These Ku70-deficient marrow cells were able to reconstitute the myeloid lineages in both primary and secondary recipients, while over 95% of the T cells in the recipients were derived from the host. However, the tertiary whole marrow recipients died within 2 weeks of transplantation, while the WT BMCs recipients survived tertiary transplantation. Competitive repopulation assays were also performed between WT and Ku70-deficient BMCs. The results showed that when Ku70-deficient BMCs were mixed with WT competitor BMCs at a 1:1 ratio, Ku70-deficient BMCs were completely outcompeted by the WT BMCs. These data demonstrate that Ku70, a key component of NHEJ, is required for HSC function. Ku70 deficiency in the hematopoietic compartment results in a long-term repopulating defect and loss of competitive repopulation ability.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 297-297
Author(s):  
Cyrus Khandanpour ◽  
Ehssan Sharif- Askari ◽  
Paul Jolicoeur ◽  
Ulrich Duehrsen ◽  
Tarik Moroy

Abstract Hematopoietic differentiation is controlled to a large extent by a network of transcription factors and chromatin modifiers and disruption of this system can lead to leukemia or lymphoma. One of the transcription factor genes, which is aberrantly expressed in human T-cell lymphoma is Growth Factor Independence 1 (Gfi1). Since over expression of Gfi1 can accelerate experimentally induced T-cell tumors in mice, it is likely that Gfi1 plays a crucial role in establishing or maintaining lymphoid neoplasms. To test this hypothesis we have used, N-ethyl-N-nitrosourea (ENU) to induce T-cell tumors in WT mice (Gfi1+/+), Gfi1-deficient mice (Gfi1−/−) or mice transgenically over expressing Gfi1 under the control of the pan-hematopoietic vav-promoter (vav-Gfi1). As expected, most of Gfi1+/+ mice (25/27) developed T-cell tumors and acute myeloid leukemia within 118 days. Similarly, vav-Gfi1 mice (10/10) developed T-cell lymphoma, but within a shorter latency period (88 days). In contrast, only 3/14 Gfi1−/− mice developed hematopoietic neoplasia with a prolonged median latency period of 126 days. Other approaches using infection of newborn mice with Moloney Murine leukemia virus (MoMuLV) to induce T-cell lymphoma or co expression of an Eμ-myc transgene to induce B-cell lymphoma showed a similar dependency of tumor formation on the presence and expression of Gfi1. Closer analysis of tumors forming in Gfi1−/− mice demonstrated that Gfi1 deficiency correlated with a smaller size of the tumors and a noticeably increased rate of cell death within the tumor samples. This pointed to a potential role of Gfi1 in the regulation of apoptosis. To explore this hypothesis, we exposed both thymocytes and hematopoietic stem cells (Lin-, Sca1+, c-kit+, LSK) to ENU or gamma-irradiation in vitro. We could observe that Gfi1−/− thymocytes and stem cells (LSK cells) have a higher rate of cell death following exposure to these DNA damage inducing agents in vitro than the WT controls. To validate these results, we recapitulated these experiments in vivo. Gfi1−/− mice exhibited severe bone marrow failure and a more pronounced loss of hematopoietic stem cells (LSK) than Gfi1+/+ mice after ENU treatment or gamma irradiation in vivo. To explore this mechanism on the molecular basis we evaluated expression of the different pro and antiapoptotic components in Gfi1+/+ and Gfi1−/− thymocytes after irradiation. Strikingly, Gfi1−/− thymocytes expressed higher levels of the pro-apoptotic proteins such as Bax and Noxa and lower levels of the CDK inhibitor p21WAF than WT thymocytes following induction of DNA damage. Our model would be that Gfi1 represents a new regulator in the cellular response to DNA damage in the hematopoietic system by inhibiting different proapoptotic factors. We propose that Gfi1 is essential for the development of lymphoid and potentially myeloid neoplasms by inhibiting apoptosis. We suggest that Gfi1 could represent a possible new target structure for therapeutic intervention.


2008 ◽  
Vol 21 (4) ◽  
pp. 787-796 ◽  
Author(s):  
Q.L. Zhang ◽  
Q. Niu ◽  
X.L. Ji ◽  
P. Conti ◽  
P. Boscolo

Besides being an aggravating factor secondary to major physiological alterations in degenerative diseases, aluminum has also been considered as a risk factor in the etiology. Although many in vivo and in vitro data are in favor of apoptosis and necrosis being involved in Al induced neurodegenerative processes, there is considerable evidence that very complex events may contribute to neural cell death. Necroptosis, a novel cell death pathway, was recently reported to contribute to ischemia brain injury. It is different from, but associated with, apoptosis and necrosis, the two common major pathways of cell demise. In the present study, SH-SY5Y cells were put under stress by Al, a potential degenerative cell death inducer. Nec-1, a specific inhibitor, was used to identify necroptosis. The characteristics observed in Nec-1 and Al treated SH-SY5Y cells showed that necrotic morphological changes were reduced, and a sharp decrease of necrotic rate was detected. Besides, there were Al-induced mitochondria membrane potential decreasing, reactive oxygen species remaining, and autophagosomes declining. The mechanism of Nec-1's effect on cell death may be related to caspases pathways. To our best knowledge, this is the pioneer report on necroptosis in mixed human neural cell death pathways, which might offer a novel therapeutic target for neurodegenerative diseases, and an extended window for neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document