scholarly journals Relationship of Erythropoietin Effectiveness to the Generative Cycle of Erythroid Precursor Cell

Blood ◽  
1970 ◽  
Vol 35 (6) ◽  
pp. 761-774 ◽  
Author(s):  
BERNARD S. MORSE ◽  
NICHOLAS J. RENCRICCA ◽  
FREDERICK STOHLMAN

Abstract Hydroxyurea, a cytotoxic agent that kills cells in DNA synthesis, was used to study the relationship between erythropoietin and the generative cycle of the immediate erythroid precursor cell. When OHU and EP were administered simultaneously to hypertransfused mice, the resultant erythroid response was diminished relative to EP treated controls. OHU given at intervals after EP resulted in a progressively greater diminution of erythroid response. From these studies, then, we would suggest that in the suppressed animal the committed stem cell compartment is in cycle but with a prolonged G1. After EP there is a shortening of the generation time and an increase in the rate of turnover of the committed stem cells. The data also indicate that cells in cycle are differentiated into the pronormoblast compartment. It further may be suggested that erythropoietin is effective throughout the bulk of the generative cycle although it seems unlikely that differentiation is accomplished during the mitotic phase. Whether erythropoietin must be present in both G1 and S as suggested by Kretchmar cannot be answered by the present studies. The data also indicate that cells of the pluripotential compartment are normally in G0 or perhaps a prolonged G1. Damage to the committed compartment appears to be in part repaired by the influx of cells from the pluripotential compartment.

1997 ◽  
Vol 45 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Jean-Pierre Molès ◽  
Fiona M. Watt

The basal layer of the epidermis contains two types of proliferating keratinocyte: stem cells, with high proliferative potential, and transit amplifying cells, which are destined to undergo terminal differentiation after a few rounds of division. It has been shown previously that two- to three-fold differences in the average staining intensity of fluorescein-conjugated antibodies to β1 integrin subunits reflect profound differences in the proliferative potential of keratinocytes, with integrin-bright populations being enriched for stem cells. In the search for additional stem cell markers, we have stained sections of normal human epidermis with antibodies to proteins involved in intercellular adhesion and quantitated the fluorescence of individual cell-cell borders. In the basal layer, patches of brightly labeled cells were detected with antibodies to E-cadherin, β-catenin, and γ-catenin, but not with antibodies to P-cadherin, α-catenin, or with pan-desmocollin and pan-desmoglein antibodies. In the body sites examined, palm and foreskin, integrinbright regions were strongly labeled for γ-catenin and weakly labeled for E-cadherin and β-catenin. Our data suggest that there are gradients of both cell-cell and cell-extracellular matrix adhesiveness within the epidermal basal layer and that the levels of E-cadherin and of β-and γ-catenin may provide markers for the stem cell compartment, stem cells expressing relatively higher levels of γ-catenin and lower levels of E-cadherin and β-catenin than other basal keratinocytes.


2014 ◽  
Vol 59 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Mariusz Z. Ratajczak ◽  
Krzysztof Marycz ◽  
Agata Poniewierska-Baran ◽  
Katarzyna Fiedorowicz ◽  
Monika Zbucka-Kretowska ◽  
...  

Blood ◽  
1976 ◽  
Vol 47 (2) ◽  
pp. 315-323 ◽  
Author(s):  
RL DeGowin ◽  
DP Gibson

Abstract To determine if mononuclear cells proliferating in murine hemopoietic spleen colonies were pluripotential in addition to possessing kinetic features of stem cells, we performed sequential studies of mice during their recovery from a split-dose irradiation regimen of 850 roentgens leg shielded-3-hr interval-850 roentgens leg irradiated (850R L.S. 3- L.I.). Injecting tritiated thymidine during stem cell compartment repletion 3 and 4 days after 850R L.S. 3- L.I. resulted in heavily labeled mononuclear cells resembling medium to large leptochromatic lymphocytes in the portion of spleen removed an hour after injection. The splenic remnant obtained from the same mouse 24–48 hr later contained lightly labeled erythroblasts, myeloid cells, and lymphoid cells. Grain counts suggested that erythroblasts and their precursors had undergone about four divisions, myeloid cells and their precursors two to three divisions, and lymphoid cells and their precursors two to three divisions during the 48-hr period. Similar studies in plethoric mice demonstrated the labeling of mononuclear cells on day 4 and their differentiation to myeloid and lymphoid cells by day 6. This finding confirmed that the labeled mononuclear cells were not exclusively erythroblast progenitors. On the basis of these and previous studies of post-irradiation survival and erythropoietic recovery, we conclude that these endogenous monomuclear cells, which resemble medium to large leptochromatic lymphocytes and replicate during stem cell compartment repletion, are pluripotential hemopoietic stem cells.


2020 ◽  
Vol 117 (14) ◽  
pp. 8064-8073 ◽  
Author(s):  
Steven J. Mileto ◽  
Thierry Jardé ◽  
Kevin O. Childress ◽  
Jaime L. Jensen ◽  
Ashleigh P. Rogers ◽  
...  

Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith,PLoS One8, e73204 (2013); S. Kozaret al.,Cell Stem Cell13, 626–633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogenClostridioides difficile,we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.


2020 ◽  
Vol 52 (7) ◽  
pp. 723-735 ◽  
Author(s):  
Yuanzhuo Gu ◽  
Xin Zheng ◽  
Junfang Ji

Abstract Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1551-1551
Author(s):  
Janina Ratajczak ◽  
Wu Wan ◽  
Rui Liu ◽  
Dong-Myung Shin ◽  
Magdalena Kucia ◽  
...  

Abstract Abstract 1551 Insulin-like growth factor-1 (Igf-1) or somatomedin is an important factor affecting proliferation of several types of cells, but its role in hematopoiesis remains controversial. Secretion of Igf-1 in the liver is stimulated directly by the growth hormone (GH)–GH receptor (GH-R) axis and indirectly by a high calorie diet. We have previously reported that Igf-1 does not directly stimulate proliferation of hematopoietic progenitors (J Clin Invest. 1994;94:320). However, our recent data indicate that Igf-1 stimulates proliferation of so-called very small embryonic-like stem cells (VSELs), that as we demonstrated, are the most developmentally primitive stem cells in adult bone marrow (BM) (Leukemia 2006;20:857) and may give rise to long-term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2010; in press doi:10.1038/leu.2010.121). We envision that VSELs play a role in rejuvenation of the pool of tissue-committed stem cells in some tissues (e.g., HSCs and MSCs in BM) and we observed that the number of these cells in murine BM decreases with age. We also observed that erasure of the somatic imprint on some paternally imprinted genes (e.g., Igf2-H19 and RasGRF1) results in attenuation of insulin/insulin-like factors (e.g., Ins/Igf-1 signaling), keeps VSELs quiescent in BM, and protects them from uncontrolled proliferation. In the current work, to shed more light on the role of Igf-1 on hematopoiesis and stem cell compartment, we analyzed BM isolated from murine Laron dwarfs, which due to a genetic mutation in the GH-R, maintain very low levels of Igf-1 in peripheral blood (PB) and interestingly are long-living animals (Nature 2010;464:504). Analysis of PB cell counts, however, did not reveal any differences in the number of erythrocytes, platelets, and leucocytes between Laron dwarf mice and wild type controls. In striking contrast, however, we observed that Laron dwarf mice have in BM i) a ∼4–5-fold increase in the number of Sca-1+c-kit+lineage- (SKL) cells and ii) a >4-fold higher number of clonogenic CFU-Mix, CFU-GM, BFU-E, and CFU-Meg cells. Interestingly, Laron dwarfs also maintained ∼3-fold higher number of VSELs in BM tissue. Since the Igf-1 level is regulated by calorie uptake, these data shed new light on caloric restriction, senescence, and the hematopoietic stem cell compartment. Accordingly, we propose a new paradigm in which chronic Igf-1 deficiency somehow protects VSELs from age-related elimination from BM. This mimics a situation seen in chronic caloric restriction where the Igf-1 level is low and this results in longevity. Since the long-living Laron dwarf mice that maintain low levels of Igf-1 have higher numbers of VSELs and HSCs in BM, we postulate that chronically elevated levels of Igf-1, resulting e.g., from high calorie uptake, may lead to premature depletion of the stem cell pool, including VSELs and HSCs, and thus be responsible for premature aging. This hypothesis is currently being tested in animals that overexpress Igf-1, and interestingly, in contrast to IGF-1–deficient Laron dwarf mice, appear to have much shorter lifespans. Further studies are needed that will link the effect of chronic high Igf-1 signaling with the development of hematological malignancies. Of note, murine Laron dwarfs are significantly protected from developing cancer and human Laron dwarfs with chronic low Igf-1 level do not develop malignancies at all. Disclosures: No relevant conflicts of interest to declare.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769224 ◽  
Author(s):  
Ioannis A Voutsadakis

Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document