Characterization of the Mouse von Willebrand Factor Promoter

Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3405-3412 ◽  
Author(s):  
Jiazhen Guan ◽  
Pascale V. Guillot ◽  
William C. Aird

Expression of the von Willebrand factor (vWF) gene is restricted to the endothelial and megakaryocyte lineages. Within the endothelium, expression of vWF varies between different vascular beds. We have previously shown that the human vWF promoter spanning a region between −2182 (relative to the start site of transcription) and the end of the first intron contains information for environmentally responsive, vascular bed-specific expression in the heart, skeletal muscle, and brain. In the present study, we cloned the mouse vWF (mvWF) promoter and studied its function in cultured endothelial cells and transgenic mice. In transient transfection assays, the mvWF gene was found to be regulated by distinct mechanisms in different endothelial cell subtypes. In independent lines of transgenic mice, an mvWF promoter fragment containing DNA sequences between −2645 and the end of the first intron directed endothelial cell-specific expression in the microvascular beds of the heart, brain, and skeletal muscle as well as the endothelial lining of the aorta. In 1 line of mice, reporter gene activity was also detected in bone marrow megakaryocytes. Taken together, these findings suggest that both the mouse and human vWF promoters are regulated by vascular bed-specific mechanisms.

Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 342-351 ◽  
Author(s):  
Ju Liu ◽  
Lei Yuan ◽  
Grietje Molema ◽  
Erzsébet Regan ◽  
Lauren Janes ◽  
...  

Abstract A region of the human von Willebrand factor (VWF) gene between −2812 and the end of the first intron (termed vWF2) was previously shown to direct expression in the endothelium of capillaries and a subset of larger blood vessels in the heart and skeletal muscle. Here, our goal was to delineate the DNA sequences responsible for this effect. A series of constructs containing deletions or mutations of vWF2 coupled to LacZ were targeted to the Hprt locus of mice, and the resulting animals were analyzed for reporter gene expression. The findings demonstrate that DNA sequences between −843 and −620 are necessary for expression in capillary but not large vessel endothelium in heart and skeletal muscle. Further, expression of VWF in capillaries and larger vessels of both tissues required the presence of a native or heterologous intron. In vitro assays implicated a role for ERG-binding ETS motif at −56 in mediating basal expression of VWF. In Hprt-targeted mice, mutation of the ETS consensus motif resulted in loss of LacZ expression in the endothelium of the heart and skeletal muscle. Together, these data indicate that distinct DNA modules regulate vascular bed–specific expression of VWF.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Lei Yuan ◽  
Lauren Janes ◽  
David Beeler ◽  
Katherine C Spokes ◽  
Joshua Smith ◽  
...  

We previously demonstrated that the first intron of the human von Willebrand factor (vWF) is required for gene expression in the endothelium of transgenic mice. Based on this finding, we hypothesized that RNA splicing plays a role in mediating vWF expression in the vasculature. To address this question, we employed transient transfection assays in human endothelial cells and megakaryocytes with intron-containing and intronless human vWF promoter-luciferase constructs. Next, we generated knockin mice in which LacZ was targeted to the endogenous mouse vWF locus in the absence or presence of the native first intron or heterologous introns from the human beta-globin, mouse DSCR-1 or hagfish coagulation factor X genes. In both the in vitro assays and the knockin mice, the loss of the first intron of vWF resulted in a significant reduction of reporter gene expression in endothelial cells, but not megakaryocytes. This effect was rescued to varying degrees by the introduction of a heterologous intron. Intron-mediated enhancement of expression was mediated at a post-transcriptional level. Together, these findings implicate a role for intronic splicing in mediating lineage-specific expression of vWF in the endothelium.


Blood ◽  
2013 ◽  
Vol 121 (21) ◽  
pp. 4404-4412 ◽  
Author(s):  
Lei Yuan ◽  
Lauren Janes ◽  
David Beeler ◽  
Katherine C. Spokes ◽  
Joshua Smith ◽  
...  

Key PointsRNA splicing of the first intron of the von Willebrand factor gene is essential for expression in the endothelium. RNA splicing may play a role in mediating endothelial cell heterogeneity.


1995 ◽  
Vol 73 (02) ◽  
pp. 309-317 ◽  
Author(s):  
Dorothy A Beacham ◽  
Miguel A Cruz ◽  
Robert I Handin

SummaryIntroduction of single amino acid substitutions into the C-terminal Arg-Gly-Asp-Ser (RGDS) site of von Willebrand Factor, referred to as RGD mutant vWF, selectively abrogated vWF binding to platelet glycoprotein IIb/IIIa (GpIIb/IIIa, αIIbβ3 and abolished human umbilical vein endothelial cell (HUVEC) spreading, but not attachment, to RGD mutant vWF (Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. 1992. J. Biol. Chem. 167, 3409-3415). These results suggested that in addition to the vitronectin receptor (VNR, αvβ3), a second endothelial membrane glycoprotein can mediate HUVEC adhesion to vWF. HUVEC attachment to wild-type (WT) and RGD-mutant vWF was reduced by two proteins known to block the vWF-platelet glycoprotein Ib/IX (GpIb/IX) interaction, the monoclonal antibody AS-7 and the recombinant polypeptide, vWF-A1. The addition of cytochalasin B or DNase I to disrupt potential GPIbα-cytoskeletal interactions enhanced the immunoprecipitation of endothelial GPIbα, caused HUVEC to round up, and increased HUVEC adhesion to RGD mutant vWF. These results indicate that while the VNR is the primary adhesion receptor for vWF, endothelial GPIbα can mediate HUVEC attachment to vWF. GpIb-dependent attachment could contribute to HUVEC adhesion under conditions when cell surface expression of the VNR is downregulated, and VNR-dependent adhesion is reduced.


1999 ◽  
Vol 82 (09) ◽  
pp. 1047-1052 ◽  
Author(s):  
M. N. Kuppuswamy ◽  
A. N. Manepalli ◽  
S. P. Bajaj ◽  
M. S. Bajaj

SummaryUnder normal physiologic conditions, tissue factor pathway inhibitor (TFPI) is synthesized primarily by the microvascular endothelium. Using Northern blotting, we studied its transcriptional expression in different organs and compared it with the expression of two other endothelial specific proteins, namely thrombomodulin (TM) and von Willebrand factor (vWF). The order of mRNA expression for each protein was: TFPI–placenta>lung>liver>kidney>heart>skeletal muscle≥pancreas>brain; TM–heart>pancreas>lung>skeletal muscle>kidney≥liver>placenta>brain; and vWF–heart>skeletal muscle>pancreas>lung≥kidney>placenta>brain>liver. Notably, heart expressed TM and vWF mRNA in large amounts and only small amounts of TFPI whereas lung expressed all three mRNAs in significant amounts. Placenta, on the contrary, expressed large amounts of TFPI but only small amounts of TM and vWF mRNAs. Brain by this technique was found to express undetectable amounts of TFPI and TM mRNAs but small amounts of vWF mRNA. The expression of TFPI mRNA in the brain was however detected by RT/PCR and the antigen was localized to the endothelium of microvessels as well as to the astrocytes and oligodendrocytes. Since ultimate expression of proteins is linked to the expression of their mRNAs, our data support a concept that vascular endothelium is made up of phenotypically diverse groups of cells and that endothelial cells of different vascular beds express specific sets of genes that enable them to carry out tissue-specific functions. Importantly, since astrocytes are known to express tissue factor, the TFPI expression by these cells may control coagulation in their microenvironment and their response to injury and inflammation.


1998 ◽  
Vol 80 (12) ◽  
pp. 1015-1017 ◽  
Author(s):  
M. Seigneur ◽  
A. D. Blann ◽  
M. Renard ◽  
F. Resplandy ◽  
J. Amiral ◽  
...  

SummaryPatients infected with HIV are at increased risk of atherosclerosis, and have evidence of endothelium dysfunction. The hypothesis was tested that HIV-related endothelium dysfunction is related to loss of antioxidants. This was done by the supplementation of the antioxidants selenium and beta-carotene. We supplemented the diet of 10 HIV-sero-positive subjects with 100 μg selenium daily, 11 subjects with 30 mg beta-carotene twice daily while 15 subjects were not supplemented. Plasma was obtained at outset and after a year, and tested by ELISA for endothelial cell, platelet and inflammatory markers.The non-supplemented patients experienced increases in von Wille-brand factor and soluble thrombomodulin (both p < 0.01). There were no changes in any of the indices in the patients taking selenium or beta-carotene.Increased von Willebrand factor and soluble thrombomodulin in the non-supplemented patients imply increased damage to the endothelium over the year of the study. Therefore we interpret the lack of increase in the patients taking antioxidants as evidence of the protection of the endothelium by these agents.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 953-959 ◽  
Author(s):  
HF van Breugel ◽  
PG de Groot ◽  
RM Heethaar ◽  
JJ Sixma

Abstract Platelet adhesion to the vessel wall is initiated by transport of blood platelets from the bulk flow to the wall. The process of diffusion and convection of the platelets is affected by rheological conditions such as well shear rate, red blood cell (RBC) deformability, and viscosity of the medium. To study the effect of plasma viscosity on platelet adhesion, perfusion experiments with a rectangular perfusion chamber were performed. Reconstituted blood, consisting of washed platelets and washed RBCs, was circulated through this chamber for 5 minutes at a wall shear rate of 300 s-1. Different albumin concentrations were made, to obtain different medium viscosities (0.89 to 1.85 mPa.s). Platelet adhesion decreased with increasing medium viscosity up to viscosities of 0.95 mPa.s, but increased with medium viscosity above this value. Instead of human albumin solution, different plasma viscosities were obtained by dilution of Waldenstrom plasma with buffer. Plasma was depleted of fibronectin, which gave a final plasma viscosity of 2.0 mPa.s, and was dialyzed against HEPES buffer and subsequently diluted with the dialysis buffer in different fractions (0.89 to 2.00 mPa.s). Perfusions were performed over a purified von Willebrand factor coating on glass, or over an endothelial cell matrix, preincubated with von Willebrand factor. With both surfaces, platelet adhesion was dependent on the plasma viscosity in a similar way: at low plasma viscosities, adhesion was decreased with increasing plasma viscosity, while at higher plasma viscosities, adhesion increased with plasma viscosity. Adhesion values at higher plasma viscosity or at higher human albumin concentrations could be explained by effects of the medium on the rigidity of the RBCs, since platelet adhesion is known to be increased by enhanced RBC rigidity. Effects of the medium on the deformability of the RBCs were measured separately with the laser diffraction method. These experiments confirmed that presence of human albumin or plasma in the measuring suspension increased the rigidity of RBCs. To prevent influence of the medium on the RBCs in perfusion experiments, the RBCs were fixated with glutaraldehyde. Perfusion experiments with fixated RBCs in plasma over a von Willebrand factor preincubated endothelial cell matrix, showed a consequent decrease in adhesion with increasing plasma viscosity, according to the diffusion theories, whereas the increase of adhesion at high plasma viscosities was lacking. This suggests that the latter effect was entirely due to increased transport of platelets by more rigid RBCs.


1987 ◽  
Author(s):  
J H Reinders ◽  
C L Verweii ◽  
J A V Mourlk ◽  
Ph G de Groot

Endothelial cells, cultured from human umbilical veins, synthesize von Willebrand Factor (vWF), that is stored by the cells in Weibel-Palade bodies, secreted into the medium and incorporated into the extracellular matrix underneath the cells. We have studied the influence of perturbation by phorbol esters and thrombin on the cellular distribution of vWF. Short-term (< 1 hour) treatment of endothelial cells with phorbol ester PMA or thrombin resulted in the release of cellular stored vWF. Long-term treatment with perturbants evoked a distinct change in the endothelial cell distribution of vWF, evident 24 to 48 hours after exposure. While the contents of the vWF storage vesicles were gradually restored within 48 hours, enhanced amounts of vWF were secreted into the medium. However, PMA did not increase the endothelial cell contents of mRNA encoding for vWF. The number as well as the size of vWF storage granules in the cells increased after exposure to perturbants. The perturbed cells responded to stimuli in releasing stored vWF, the amounts secreted were even greater than those in control cells. The extracellular matrix lost its vWF contents as the result of PMA or thrombin treatment, by blocking deposition of vWF in the matrix, not by enhancing degradation of matrix vWF. In perfusion experiments, the adhesion of washed platelets onto the isolated matrix of perturbed cells was considerable less than that in controls. Addition of vWF to the perfusate overcame this impairment. Thus, perturbation of endothelial cells changes the cellular distribution of vWF.Supported in part by ZWO grants 13-30-31 and 13-90-91 and Netherlands Heart Foundation grant 28.004.


Sign in / Sign up

Export Citation Format

Share Document