scholarly journals Quizartinib-resistant FLT3-ITD acute myeloid leukemia cells are sensitive to the FLT3-Aurora kinase inhibitor CCT241736

2020 ◽  
Vol 4 (7) ◽  
pp. 1478-1491 ◽  
Author(s):  
Andrew S. Moore ◽  
Amir Faisal ◽  
Grace W. Y. Mak ◽  
Farideh Miraki-Moud ◽  
Vassilios Bavetsias ◽  
...  

Abstract Internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic mutations in acute myeloid leukemia (AML); it causes constitutive activation of FLT3 kinase and is associated with high relapse rates and poor survival. Small-molecule inhibition of FLT3 represents an attractive therapeutic strategy for this subtype of AML, although resistance from secondary FLT3 tyrosine kinase domain (FLT3-TKD) mutations is an emerging clinical problem. CCT241736 is an orally bioavailable, selective, and potent dual inhibitor of FLT3 and Aurora kinases. FLT3-ITD+ cells with secondary FLT3-TKD mutations have high in vitro relative resistance to the FLT3 inhibitors quizartinib and sorafenib, but not to CCT241736. The mechanism of action of CCT241736 results in significant in vivo efficacy, with inhibition of tumor growth observed in efficacy studies in FLT3-ITD and FLT3-ITD-TKD human tumor xenograft models. The efficacy of CCT241736 was also confirmed in primary samples from AML patients, including those with quizartinib-resistant disease, which induces apoptosis through inhibition of both FLT3 and Aurora kinases. The unique combination of CCT241736 properties based on robust potency, dual selectivity, and significant in vivo activity indicate that CCT241736 is a bona fide clinical drug candidate for FLT3-ITD and TKD AML patients with resistance to current drugs.

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Juanjuan Zhao ◽  
Yongping Song ◽  
Delong Liu

Abstract FMS-like tyrosine kinase 3- internal tandem duplication (FLT3-ITD) remains as one of the most frequently mutated genes in acute myeloid leukemia (AML), especially in those with normal cytogenetics. The FLT3-ITD and FLT3-TKD (tyrosine kinase domain) mutations are biomarkers for high risk AML and are associated with drug resistance and high risk of relapse. Multiple FLT3 inhibitors are in clinical development, including lestaurtinib, tandutinib, quizartinib, midostaurin, gilteritinib, and crenolanib. Midostaurin and gilteritinib have been approved by FDA for Flt3 mutated AML. Gilteritinib (ASP2215, Xospata) is a small molecule dual inhibitor of FLT3/AXL. The ADMIRAL study showed that longer overall survival and higher response rate are associated with gilteritinib in comparison with salvage chemotherapy for relapse /refractory (R/R) AML. These data from the ADMIRAL study may lead to the therapy paradigm shift and establish gilteritinib as the new standard therapy for R/R FLT3-mutated AML. Currently, multiple clinical trials are ongoing to evaluate the combination of gilteritinib with other agents and regimens. This study summarized clinical trials of gilteritinib for AML.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Peihong Wang ◽  
Xinhua Xiao ◽  
Yuyin Zhang ◽  
Baoyuan Zhang ◽  
Donghe Li ◽  
...  

AbstractFLT3 mutations are the most frequently identified genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Multiple FLT3 inhibitors are in various stages of clinical evaluation. However, resistance to FLT3 inhibitors resulting from acquired point mutations in tyrosine kinase domain (TKD) have limited the sustained efficacy of treatments, and a “gatekeeper” mutation (F691L) is resistant to most available FLT3 inhibitors. Thus, new FLT3 inhibitors against both FLT3 internal tandem duplication (FLT3-ITD) and FLT3-TKD mutations (including F691L) are urgently sought. Herein, we identified KX2-391 as a dual FLT3 and tubulin inhibitor and investigated its efficacy and mechanisms in overcoming drug-resistant FLT3-ITD-TKD mutations in AML. KX2-391 exhibited potent growth inhibitory and apoptosis promoting effects on diverse AML cell lines harboring FLT3-ITD mutations and AC220-resistant mutations at the D835 and F691 residues in TKD and inhibited FLT3 phosphorylation and its downstream signaling targets. Orally administered KX2-391 significantly prolonged the survival of a murine leukemia model induced by FLT3-ITD-F691L. KX2-391 also significantly inhibited the growth of 4 primary AML cells expressing FLT3-ITD and 2 primary AML cells expressing FLT3-ITD-D835Y. Our preclinical data highlight KX2-391 as a promising FLT3 inhibitor for the treatment of AML patients harboring FLT3 mutations, especially refractory/relapsed patients with F691L and other FLT3-TKD mutations.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5141-5141 ◽  
Author(s):  
Changnian Liu ◽  
Bin Liu ◽  
Chunping Xu ◽  
Pan Zhang ◽  
Bin Li ◽  
...  

Fms-like tyrosine kinase 3 (FLT3) is part of a family of receptor tyrosine kinases (RTKs), and a molecular therapeutic target of acute myeloid leukemia (AML). There are three FTL3 inhibitors, midostaurin, gilteritinib, and quizartinib have been approved for clinical treatment of AML. We have evaluated the inhibition of cell proliferation in vitro and antitumor activity in vivo of ETH-155008, a novel triple inhibitor of FLT3, Pim-3 and CDK4/6. ETH-155008 was found to have a strong inhibitory activity against key target enzymes (FLT3 IC50 at 0.5nM; Flt3 -Itd IC50 at 0.6 nM; CDK4/D1 IC50 at 0.8nM, CDK6/D1 IC50 at 1.4nM), which were more potent than the tested positive controls gilteritinib, quizartinib, and AMG-925. ETH-155008 showed to have highly potent antiproliferative activities against cultured human acute myeloid leukemia cells (MV4-11 and Molm-13) with IC50 at 4.1nM and 12 nM, respectively, and showed remarkable antitumor efficacy in vivo. The in vivo antitumor activity of ETH-155008 was evaluated and compared with midostaurin and gilteritinib in the treatment of the two models with mutant forms in TKD and gatekeeper region, namely BaF3 FLT3-ITD-F691L and BaF3 FLT3-ITD-D835Y, respectively. Treatment with ETH-155008 (40 mg/kg/daily x 18, oral) significantly delayed tumor growth and resulted in a smaller mean tumor size (tumor growth inhibition (TGI) of 86% (p<0.001 compared with the control group) in the BaF3 FLT3-ITD-F691L model, and cured all of the tumor-bearing mice in the BaF3 FLT3-ITD-D835Y model. The antitumor activity of ETH-155008 was comparable to gilteritinib, but much better than midostaurin, the latter showed only mild antitumor activity with ~25% of TGI in the two FLT3 mutant models. We also tested the therapeutic efficacy of ETH-155008 in the human AML xenograft model MV4-11, ETH-155008 cured all of the tumor-bearing mice (mean tumor size at time of treatment 126 mm3), at a dose of 40mg/kg/daily for 14 days, that showed very little toxicity (only 2% body weight loss) which were well below the maximum tolerated dose. ETH-155008 represents a novel dual inhibitor that may yet fulfill the promise of effective AML therapy through dual targeting of FLT3 and CDK4/6. These preclinical results supported the safety and efficacy observed in the preclinical studies and worthy of further clinical evaluation. Disclosures Liu: Euthare LLC: Other: founder. Zhang:shengke therapeutics: Other: cofounder. Yu:shengke Therapeutics: Other: co-founder.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2013 ◽  
Vol 37 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Rainer Claus ◽  
Dietmar Pfeifer ◽  
Maika Almstedt ◽  
Manuela Zucknick ◽  
Björn Hackanson ◽  
...  

2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


2005 ◽  
Vol 114 (2) ◽  
pp. 121-124
Author(s):  
T. Fietz ◽  
R. Arnold ◽  
G. Massenkeil ◽  
K. Rieger ◽  
B. Reufi ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120925 ◽  
Author(s):  
Binje Vick ◽  
Maja Rothenberg ◽  
Nadine Sandhöfer ◽  
Michela Carlet ◽  
Cornelia Finkenzeller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document