scholarly journals Passively transferred IgG enhances humoral immunity to a red blood cell alloantigen in mice

2020 ◽  
Vol 4 (7) ◽  
pp. 1526-1537
Author(s):  
David R. Gruber ◽  
Amanda L. Richards ◽  
Heather L. Howie ◽  
Ariel M. Hay ◽  
Jenna N. Lebedev ◽  
...  

Abstract Antibodies are typically thought of as the endpoint of humoral immunity that occur as the result of an adaptive immune response. However, affinity-matured antibodies can be present at the initiation of a new immune response, most commonly because of passive administration as a medical therapy. The current paradigm is that immunoglobulin M (IgM), IgA, and IgE enhance subsequent humoral immunity. In contrast, IgG has a “dual effect” in which it enhances responses to soluble antigens but suppresses responses to antigens on red blood cells (RBCs) (eg, immunoprophylaxis with anti-RhD). Here, we report a system in which passive antibody to an RBC antigen promotes a robust cellular immune response leading to endogenous CD4+ T-cell activation, germinal center formation, antibody secretion, and immunological memory. The mechanism requires ligation of Fcγ receptors on a specific subset of dendritic cells that results in CD4+ T-cell activation and expansion. Moreover, antibodies cross-enhance responses to a third-party antigen, but only if it is expressed on the same RBC as the antigen recognized by the antibody. Importantly, these observations were IgG subtype specific. Thus, these findings demonstrate that antibodies to RBC alloantigens can enhance humoral immunity in an IgG subtype-specific fashion and provide mechanistic elucidation of the enhancing effects.

Author(s):  
Ivana von Metzler ◽  
Julia Campe ◽  
Sabine Huenecke ◽  
Marc S. Raab ◽  
Hartmut Goldschmidt ◽  
...  

Abstract Multiple myeloma patients are often treated with immunomodulatory drugs, proteasome inhibitors, or monoclonal antibodies until disease progression. Continuous therapy in combination with the underlying disease frequently results in severe humoral and cellular immunodeficiency, which often manifests in recurrent infections. Here, we report on the clinical management and immunological data of three multiple-myeloma patients diagnosed with COVID-19. Despite severe hypogammaglobulinemia, deteriorated T cell counts, and neutropenia, the patients were able to combat COVID-19 by balanced response of innate immunity, strong CD8+ and CD4+ T cell activation and differentiation, development of specific T-cell memory subsets, and development of anti-SARS-CoV-2 type IgM and IgG antibodies with virus-neutralizing capacities. Even 12 months after re-introduction of lenalidomide maintenance therapy, antibody levels and virus-neutralizing antibody titers remained detectable, indicating persisting immunity against SARS-CoV-2. We conclude that in MM patients who tested positive for SARS-CoV-2 and were receiving active MM treatment, immune response assessment could be a useful tool to help guide decision-making regarding the continuation of anti-tumor therapy and supportive therapy. Key messages Immunosuppression due to multiple myeloma might not be the crucial factor that is affecting the course of COVID-19. In this case, despite pre-existing severe deficits in CD4+ T-cell counts and IgA und IgM deficiency, we noticed a robust humoral and cellular immune response against SARS-CoV-2. Evaluation of immune response and antibody titers in MM patients that were tested positive for SARS-CoV-2 and are on active MM treatment should be performed on a larger scale; the findings might affect further treatment recommendations for COVID-19, MM treatment re-introduction, and isolation measures.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2123-2123
Author(s):  
Rita Maccario ◽  
Marina Podestà ◽  
Antonia Moretta ◽  
Angela Cometa ◽  
Patrizia Comoli ◽  
...  

Abstract Experimental evidence and preliminary clinical studies have demonstrated that human mesenchymal stem cells (MSCs) display important immune modulatory function of potential relevant interest in the setting of allogeneic hematopoietic stem cell (HSC) transplantation. Effectiveness of MSCs in controlling severe GVHD seems to be related to the immune-regulatory role they play in suppressing alloantigen-specific T-cell activation. Aim of the present study was to extend the analysis of the mechanisms responsible for the immune regulatory effect of interaction between MSCs and alloantigen-specific immune response elicited in vitro in primary and in secondary mixed lymphocyte culture (MLC). At difference with most previously reported studies, we decided to employ non-irradiated MSCs, reasoning that irradiation might impair, beside the proliferative capacity, also the differentiation capability of MSCs and, consequently, alter their interaction pattern with lymphocyte subsets. MSC were added to primary MLC at different doses (MLC-responder-PBMC:MSC ratios = 1:1 and 10:1). Dendritic cell (DC) differentiation, lymphocyte proliferation, alloantigen-specific cytotoxic activity and differentiation of CD4+ T-cell subsets expressing CD25 and/or CTLA4 antigens were assessed in primary and secondary MLC, comparing the effect observed using third-party MSCs with that obtained employing autologous to the MLC-responder (autologous) MSCs. Results demonstrated that human MSCs: (1) strongly inhibit alloantigen-induced DC1 differentiation; (2) down-regulate, in a dose-dependent manner, alloantigen-induced lymphocyte expansion, especially that of CD8+ T cells and of NK lymphocytes; (3) favor the differentiation of CD4+ T cells co-expressing CD25 and/or CTLA4, a phenotype associated with regulatory/suppressive function of immune response; (4) cause a dose-dependent reduction of alloantigen-specific cytotoxic capacity mediated by either cytotoxic T lymphocytes or NK cells; (5) exert more effective suppressive activity on MLC-induced T-cell activation when they are allogeneic rather than autologous with respect to responder cells. In particular, higher percentages of CD4+ and of CD4+CD25+ T cells co-expressing CTLA4+ were detected when third-party, rather than autologous, MSCs were added to MLC. These data suggest that T-cell recognition of alloantigens expressed by MSCs may further facilitate the preferential differentiation of activated CD4+ T cells expressing CTLA4, a glycoprotein, known to deliver an inhibitory signal to T cells and to mediate apoptosis of previously activated T lymphocytes. Several studies previously demonstrated that MSCs exert inhibitory effect on lymphocyte activation through the release of soluble factors. Our data suggest that the preferential differentiation of CD4+CD25+ regulatory T-cell subsets may be favored by other mechanisms of MSC-mediated inhibition of alloantigen-induced effector cell activation and expansion, and, in turn, these CD4+CD25+ cells contribute to propagate and extend suppressor activity. Altogether, our results provide immunological support to the use of MSCs for prevention of immune complications related to both HSC and solid organ transplantation and to the theory that MSCs are “universal” suppressors of immune reactivity.


2017 ◽  
Vol 101 ◽  
pp. 398-407 ◽  
Author(s):  
Guangchuan Wang ◽  
Jie Wu ◽  
Miao Miao ◽  
Heng Dou ◽  
Ning Nan ◽  
...  

2013 ◽  
Vol 86 (6) ◽  
pp. 770-781 ◽  
Author(s):  
Andrew J. Wiemer ◽  
Sarah A. Wernimont ◽  
Thai-duong Cung ◽  
David A. Bennin ◽  
Hilary E. Beggs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document