scholarly journals Altered neural activity in brain cough suppression networks in cigarette smokers

2019 ◽  
Vol 54 (3) ◽  
pp. 1900362 ◽  
Author(s):  
Ayaka Ando ◽  
Stuart B. Mazzone ◽  
Michael J. Farrell

Cough is important for airway defence, and studies in healthy animals and humans have revealed multiple brain networks intimately involved in the perception of airway irritation, cough induction and cough suppression. Changes in cough sensitivity and/or the ability to suppress cough accompany pulmonary pathologies, suggesting a level of plasticity is possible in these central neural circuits. However, little is known about how persistent inputs from the lung might modify the brain processes regulating cough.In the present study, we used human functional brain imaging to investigate the central neural responses that accompany an altered cough sensitivity in cigarette smokers.In nonsmokers, inhalation of the airway irritant capsaicin induced a transient urge-to-cough associated with the activation of a distributed brain network that included sensory, prefrontal and motor cortical regions. Cigarette smokers demonstrated significantly higher thresholds for capsaicin-induced urge-to-cough, consistent with a reduced sensitivity to airway irritation. Intriguingly, this was accompanied by increased activation in brain regions known to be involved in both cough sensory processing (primary sensorimotor cortex) and cough suppression (dorsolateral prefrontal cortex and the midbrain nucleus cuneiformis). Activations in the prefrontal cortex were highest among participants with the least severe smoking behaviour, whereas those in the midbrain correlated with more severe smoking behaviour.These outcomes suggest that smoking-induced sensitisation of central cough neural circuits is offset by concurrently enhanced central suppression. Furthermore, central suppression mechanisms may evolve with the severity of smoke exposure, changing from initial prefrontal inhibition to more primitive midbrain processes as exposure increases.

2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Andreea Oliviana Diaconescu ◽  
Madeline Stecy ◽  
Lars Kasper ◽  
Christopher J Burke ◽  
Zoltan Nagy ◽  
...  

Decision making requires integrating knowledge gathered from personal experiences with advice from others. The neural underpinnings of the process of arbitrating between information sources has not been fully elucidated. In this study, we formalized arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modeling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our definition of arbitration as a ratio of precisions. Functional neuroimaging demonstrated that arbitration signals were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favor of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favor of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioral and neural levels.


2013 ◽  
Vol 27 (3) ◽  
pp. 267-276 ◽  
Author(s):  
Faezeh Vedaei ◽  
Mohammad Fakhri ◽  
Mohammad Hossein Harirchian ◽  
Kavous Firouznia ◽  
Yones Lotfi ◽  
...  

The sense of smell is a complex chemosensory processing in human and animals that allows them to connect with the environment as one of their chief sensory systems. In the field of functional brain imaging, many studies have focused on locating brain regions that are involved during olfactory processing. Despite wealth of literature about brain network in different olfactory tasks, there is a paucity of data regarding task design. Moreover, considering importance of olfactory tasks for patients with variety of neurological diseases, special contemplations should be addressed for patients. In this article, we review current olfaction tasks for behavioral studies and functional neuroimaging assessments, as well as technical principles regarding utilization of these tasks in functional magnetic resonance imaging studies.


1999 ◽  
Vol 9 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Roy King ◽  
Ann Brownstone

Recent neuroimaging studies of brain function have led to an explosion of knowledge about psychological processes and states. In this paper functional brain imaging studies of Yoga meditation are reviewed. Tantra-based meditations activate frontal and occipital cortical regions involved in focused, sustained attention and visual imagery. The overall pattern of brain activation in Tantra-based meditations is similar to that of self-hypnosis but different from that of sleep onset. Pure consciousness, the ultimate aim of Vedanta-based meditation, also activates frontal cortical areas regulating focused attention but deactivates sensory areas involved in imagery. Functional brain imaging studies thus support the distinction between meditation with conceptual support and pure-consciousness meditation without conceptual support, a distinction that appears throughout Yoga meditation texts. Brain imaging investigations also explain how Yoga therapy may be helpful to those with anxiety disorders by reducing activity in brain regions linked to the processing of negative emotions.


2010 ◽  
Vol 22 (10) ◽  
pp. 2263-2275 ◽  
Author(s):  
Michal Zaretsky ◽  
Avi Mendelsohn ◽  
Matti Mintz ◽  
Talma Hendler

Interpretation of emotional context is a pivotal aspect of understanding social situations. A critical component of this process is assessment of danger levels in the surrounding, which may have a direct effect on the organism's survival. The limbic system has been implicated in mediating this assessment. In situations of uncertainty, the evaluation process may also call for greater involvement of prefrontal cortex for decision-making and planning of an appropriate behavioral response. In the following study, morphed face images depicting emotional expressions were used to examine brain correlates of subjective uncertainty and perceptual ambiguity regarding danger. Fear and neutral expressions of 20 faces were morphed, and each of the face videos was divided into three sequences of equal length representing three levels of objective certainty regarding the expressions neutral, fear, and ambiguous. Sixteen subjects were scanned in a 1.5-T scanner while viewing 60 × 6-sec video sequences and were asked to report their subjective certainty regarding the level of danger surrounding the face on a four-level scale combining definite/maybe and danger/no-danger values. The individual responses were recorded and used as the basis for a “subjective protocol” versus an “objective protocol.” Significant activations of the amygdala, dorsomedial prefrontal cortex, and dorsolateral prefrontal cortex were observed under the subjective protocol of internally driven uncertainty, but not under objective stimuli-based ambiguity. We suggest that this brain network is involved in generating subjective assessment of social affective cues. This study provides further support to the “relevance detector” theory of the amygdala and implicates its importance to behavior relying heavily on subjective assessment of danger, such as in the security domain context.


Author(s):  
Kristen R. Maynard ◽  
Leonardo Collado-Torres ◽  
Lukas M. Weber ◽  
Cedric Uytingco ◽  
Brianna K. Barry ◽  
...  

AbstractWe used the 10x Genomics Visium platform to define the spatial topography of gene expression in the six-layered human dorsolateral prefrontal cortex (DLPFC). We identified extensive layer-enriched expression signatures, and refined associations to previous laminar markers. We overlaid our laminar expression signatures onto large-scale single nuclei RNA sequencing data, enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric disorder gene sets, we showed differential layer-enriched expression of genes associated with schizophrenia and autism spectrum disorder, highlighting the clinical relevance of spatially-defined expression. We then developed a data-driven framework to define unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or brain regions where morphological architecture is not as well-defined as cortical laminae. We lastly created a web application for the scientific community to explore these raw and summarized data to augment ongoing neuroscience and spatial transcriptomics research (http://research.libd.org/spatialLIBD).


2020 ◽  
Author(s):  
Hashini Wanniarachchi ◽  
Yan Lang ◽  
Xinlong Wang ◽  
Sridhar Nerur ◽  
Kay-Yut Chen ◽  
...  

AbstractNeuroeconomics with neuroimaging is a novel approach involving economics and neuroscience. The newsvendor problem (NP) is a prevalent economics concept that may be used to map brain activations during NP-evoked risky decision making. In this study, we hypothesized that key brain regions responsible for NP are dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). Twenty-seven human subjects participated in the study using 40 NP trials; the participants were randomly assigned to a group with a low-profit margin (LM) or high-profit margin (HM) treatment. Cerebral hemodynamic responses were recorded simultaneously during the NP experiments from all participants with a 77-channel functional Near-infrared Spectroscopy (fNIRS) system. After data preprocessing, general linear model was applied to generate brain activation maps, followed by statistical t-tests. The results showed that: (a) DLPFC and OFC were significantly evoked by NP versus baseline regardless of treatment types; (b) DLPFC and OFC were activated by HM versus baseline; and (c) DLPFC was activated during LM versus baseline. Furthermore, significant deactivation in right DLPFC was shown due to LM with respect to HM. This study affirms that DLPFC and OFC are two key cortical regions when solving NP. In particular, right DLPFC was found to be more deactivated under challenging risk decision making.


2018 ◽  
Author(s):  
L Collado-Torres ◽  
EE Burke ◽  
A Peterson ◽  
JH Shin ◽  
RE Straub ◽  
...  

AbstractRecent large-scale genomics efforts have better characterized the molecular correlates of schizophrenia in postmortem human neocortex, but not hippocampus which is a brain region prominently implicated in its pathogenesis. Here in the second phase of the BrainSeq Consortium (Phase II), we have generated RiboZero RNA-seq data for 900 samples across both the dorsolateral prefrontal cortex (DLPFC) and the hippocampus (HIPPO) for 551 individuals (286 affected by schizophrenia disorder: SCZD). We identify substantial regional differences in gene expression, in both pre- and post-natal life, and find widespread differences in how genes are regulated across development. By extending quality surrogate variable analysis (qSVA) to multiple brain regions, we identified 48 and 245 differentially expressed genes (DEG) by SCZD diagnosis (FDR<5%) in HIPPO and DLPFC, respectively, with surprisingly minimal overlap in DEG between the two brain regions. We further identified 205,618 brain region-dependent eQTLs (FDR<1%) and found that 124 GWAS risk loci contain eQTLs in at least one of the regions. We also identify potential molecular correlates of in vivo evidence of altered prefrontal-hippocampal functional coherence in schizophrenia. These results underscore the complexity and regional heterogeneity of the transcriptional correlates of schizophrenia, and suggest future schizophrenia therapeutics may need to target molecular pathologies localized to specific brain regions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Linlin Yu ◽  
Quanshan Long ◽  
Yancheng Tang ◽  
Shouhang Yin ◽  
Zijun Chen ◽  
...  

We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.


Sign in / Sign up

Export Citation Format

Share Document