scholarly journals Effect of a supplement containing primarily beta alanine, arginine, creatine malate, and glycerol monostearate on exercise-induced changes in lean mass of the arms

Author(s):  
Tim Ziegenfuss ◽  
Jamie Landis ◽  
Jennifer Hofheins
Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1250
Author(s):  
Sarah J. Wherry ◽  
Ryan M. Miller ◽  
Sarah H. Jeong ◽  
Kristen M. Beavers

Despite the adverse metabolic and functional consequences of obesity, caloric restriction- (CR) induced weight loss is often contra-indicated in older adults with obesity due to the accompanying loss of areal bone mineral density (aBMD) and subsequent increased risk of fracture. Several studies show a positive effect of exercise on aBMD among weight-stable older adults; however, data on the ability of exercise to mitigate bone loss secondary to CR are surprisingly equivocal. The purpose of this review is to provide a focused update of the randomized controlled trial literature assessing the efficacy of exercise as a countermeasure to CR-induced bone loss among older adults. Secondarily, we present data demonstrating the occurrence of exercise-induced changes in bone biomarkers, offering insight into why exercise is not more effective than observed in mitigating CR-induced bone loss.


1997 ◽  
Vol 85 (3) ◽  
pp. 1075-1078 ◽  
Author(s):  
D. Craig Huddy ◽  
Robert L. Johnson ◽  
Michael H. Stone ◽  
Christopher M. Proulx ◽  
Katherine A. Pierce

Students (39 men and 27 women) from a southern university, who were enrolled in a 14-wk. introductory weight-training course, were administered a 20-item body-image questionnaire and subsequently underwent skinfold measurements to assess percent body fat. Mean scores were correlated with percent body fat. For men, women, and both sexes combined correlations were significant and inverse ( rs = −.68, −.41, −.66, respectively). Body image as measured was inversely related to percent body fat among these college students. Researchers should examine how dietary and exercise-induced changes in adiposity (pre-post design) influence scores on body image.


2021 ◽  
Author(s):  
Sarah Ahmad ◽  
Rodney Hansen ◽  
Matthew Schmolesky

AbstractResearch suggests strong inter-relationships between physical exercise, levels of brain-derived neurotrophic factor (BDNF), levels of estrogen, and the menstrual cycle, and yet no single study has examined these factors collectively in humans. The current study assessed the effect of an acute bout of vigorous aerobic exercise (20 minutes of stationary cycling at 80% of heart rate reserve) on serum BDNF and estradiol in healthy, eumenorrheic women, ages 18-28. In addition, this study determined whether basal BDNF or the exercise-induced increase in BDNF varies throughout the menstrual cycle. Thirty-four subjects were assigned to an experimental (n = 27) or control condition (n = 7). Exercise transiently increased both estradiol (51.2%) and BDNF (23.6%), and basal levels of BDNF and estradiol predicted the magnitude of the exercise-induced increases. Basal BDNF did not vary significantly throughout the menstrual cycle. Exercise-induced changes in BDNF did not correlate with menstrual cycle day or basal estradiol. Basal estradiol and basal BDNF showed a marginally significant positive correlation. Taken together, these results indicate that brief, vigorous aerobic exercise is sufficient to elevate both BDNF and estradiol in healthy women and that the menstrual cycle dramatically influences the magnitude of exercise-induced changes in estradiol, but not BDNF


2007 ◽  
Vol 102 (2) ◽  
pp. 634-640 ◽  
Author(s):  
Edward P. Weiss ◽  
Susan B. Racette ◽  
Dennis T. Villareal ◽  
Luigi Fontana ◽  
Karen Steger-May ◽  
...  

Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (V̇o2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and V̇o2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5–29.9 kg/m2) were studied before and after 12 mo of weight loss by CR ( n = 18) or EX ( n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill V̇o2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: −10.7 ± 1.4%, EX: −9.5 ± 1.5%) and lean mass (CR: −3.5 ± 0.7%, EX: −2.2 ± 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (−6.9 ± 0.8%) and composite knee flexion strength (−7.2 ± 3%) occurred in the CR group only. Absolute V̇o2 max decreased significantly in the CR group (−6.8 ± 2.3%), whereas the EX group had significant increases in both absolute (+15.5 ± 2.4%) and relative (+28.3 ± 3.0%) V̇o2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity.


2007 ◽  
Vol 97 (03) ◽  
pp. 444-450 ◽  
Author(s):  
Rino Migliacci ◽  
Alessandra Procacci ◽  
Paola De Monte ◽  
Erminio Bonizzoni ◽  
Paolo Gresele

SummaryIschemia/reperfusion damage evokes systemic inflammation and endothelial dysfunction in patients with intermittent claudication. We compared the effects of aspirin with those of a nitric oxide-donating aspirin in preventing the acute, systemic endothelial dysfunction provoked by exercise-induced ischemia of the lower limbs in patients with intermittent claudication. In a prospective, randomized, single-blind, parallel-groups trial among 44 patients with intermittent claudication we compared four weeks of aspirin (100 mg o.d.) with NCX 4016 (800 mg b.i.d.). Primary end point was the exercise-induced changes in brachial flow-mediated vasodilation (FMD) at day 28; secondary end points were effort-induced changes of markers of neutrophil (plasma elastase) and endothelial (soluble VCAM-1) activation. Baseline FMD was comparable in the two groups, both on day I (pre-treatment: aspirin = 3.1 ± 0.5%, nitroaspirin = 3.9 ± 0.7%, p=NS), and on day 28 (aspirin = 3.4 ± 0.7%, NCX 4016 = 3.2 ± 0.6%, p=NS). Maximal treadmill exercise induced an acute worsening of FMD in both groups at baseline (aspirin = –1.15%, nitroaspirin = –1.76%); after four weeks treatment, the impairment of FMD induced by exercise was still present in the aspirin-treated group (- 1.46%) while it was abolished in the NCX 4016-treated group (+ 0.79%, p= 0.038 vs. aspirin). Similarly, exercise induced an increase of plasma elastase and of sVCAM-l which were not affected by aspirin while they were suppressed by NCX 4016. Maximal treadmill exercise induces a systemic arterial endothelial dysfunction in patients with intermittent claudication. A nitric oxide-donating aspirin, but not aspirin, prevents effort-induced endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document