Additive Manufacturing Feature Taxonomy and Placement of Parts in AM Enclosure

2022 ◽  
pp. 138-176
Author(s):  
Prafull Agarwal ◽  
Rishi Kurian ◽  
Ravi Kumar Gupta

Additive Manufacturing (AM) is a layer-by-layer deposition of material for the production of the desired product. The design flexibility associated with AM is much more when compared to the conventional manufacturing process. To manufacture a part with AM, two things play a critical role: the designing of the part and the other is the placement of the part in the build volume. As already mentioned, design flexibility associated with AM is much more when compared to the conventional manufacturing process. However, to correctly implement the design flexibility, we need a knowledge base at our disposal so that appropriate features can be used for the part production. The AM feature taxonomy forms the backbone of the knowledge base. The taxonomy comprises AM features classified based on different categories, which helps us understand every feature's importance. Talking about the part placement, we know that optimal placement is the key factor that makes the AM process economically feasible.

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Bin Chen ◽  
Peng Chen ◽  
Yongjun Huang ◽  
Xiangxi Xu ◽  
Yibo Liu ◽  
...  

Abstract Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life. This diamond super tool, as well as the manufacturing equipment, has been unavailable to Chinese enterprises for a long time due to patents. In this paper, a diamond blade segment with a 3D lattice of diamond grits was additively manufactured using a new type of cold pressing equipment (AME100). The equipment, designed with a rotary working platform and 16 molding stations, can be used to additively manufacture segments with diamond grits arranged in an orderly fashion, layer by layer; under this additive manufacturing process, at least 216000 pcs of diamond green segments with five orderly arranged grit layers can be produced per month. The microstructure of the segment was observed via SEM and the diamond blade fabricated using these segments was compared to other commercial cutting tools. The experimental results showed that the 3D lattice of diamond grits was formed in the green segment. The filling rate of diamond grits in the lattice could be guaranteed to be above 95%; this is much higher than the 90% filling rate of the automatic array system (ARIX). When used to cut stone, the cutting amount of the blade with segments made by AME100 is two times that of ordinary tools, with the same diamond concentration. When used to dry cut reinforced concrete, its cutting speed is 10% faster than that of ARIX. Under wet cutting conditions, its service life is twice that of ARIX. By applying the machine vision online inspection system and a special needle jig with a negative pressure system, this study developed a piece of additive manufacturing equipment for efficiently fabricating blade segments with a 3D lattice of diamond grits.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


Author(s):  
K. Blake Perez ◽  
Christopher B. Williams

The layer-by-layer nature of additive manufacturing (AM) allows for access to the entire build volume of an artifact during manufacture, including its internal structure. Internal voids are accessible during the build process and allow for components to be embedded and sealed with subsequently printed layers. When AM is combined with Direct Write (DW) of conductive materials, the resulting hybrid process enables the direct manufacture of parts with embedded electronics, including interconnects and sensors. However, the hybridization of DW and AM technologies is non-trivial due to (i) identifying DW materials and processes that are compatible with AM infrastructure, throughput and resolution, (ii) temperature processing requirements, and (iii) interactions between the two materials. In this paper, the authors explore DW technologies and materials to identify those that are most compatible with AM. From this exploration, the authors abstract a set of generalized design considerations for the design of a hybrid AM and DW process. These considerations are then employed in a systematic design process in which a DW system for depositing conductive materials during the PolyJet manufacturing process is realized. The resulting system is able to create embedded functional electronic interconnects and sensors in printed parts composed of both stiff and flexible polymers.


Author(s):  
Vivek Kumar P ◽  
◽  
Soundrapandian E ◽  
Jenin Joseph A ◽  
Kanagarajan E ◽  
...  

Additive manufacturing process is a method of layer by layer joining of materials to create components from three-dimensional (3D) model data. After their introduction in the automotive sector a decade ago, it has seen a significant rise in research and growth. The Additive manufacturing is classified into different types based upon the energy source use in the fabrication process. In our project, we used self-build CNC machine that runs MACH3 software, as well as the MACH3 controller is used to control the welding torch motion for material addition through three axis movement (X, Y and Z). In the project we used ER70 S-6 weld wire for the fabrication and examined its microstructure and mechanical properties. Different layers of the specimen had different microstructures, according to microstructural studies of the product. Rockwell hardness tester used for testing hardness of the product. According to the observation of the part fabricated components using the Wire Arc Additive Manufacturing process outperformed the mechanical properties of mild steel casting process. The product fabricated by Wire Arc Additive Manufacturing process properties is superior to conventional casting process.


Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Additive Manufacturing (AM) is a novel process that enables the manufacturing of complex geometries through layer-by-layer deposition of material. AM processes provide a stark contrast to traditional, subtractive manufacturing processes, which has resulted in the emergence of design for additive manufacturing (DfAM) to capitalize on AM’s capabilities. In order to support the increasing use of AM in engineering, it is important to shift from the traditional design for manufacturing and assembly mindset, towards integrating DfAM. To facilitate this, DfAM must be included in the engineering design curriculum in a manner that has the highest impact. While previous research has systematically organized DfAM concepts into process capability-based (opportunistic) and limitation-based (restrictive) considerations, limited research has been conducted on the impact of teaching DfAM on the student’s design process. This study investigates this interaction by comparing two DfAM educational interventions conducted at different points in the academic semester. The two versions are compared by evaluating the students’ perceived utility, change in self-efficacy, and the use of DfAM concepts in design. The results show that introducing DfAM early in the semester when students have little previous experience in AM resulted in the largest gains in students perceiving utility in learning about DfAM concepts and DfAM self-efficacy gains. Further, we see that this increase relates to greater application of opportunistic DfAM concepts in student design ideas in a DfAM challenge. However, no difference was seen in the application of restrictive DfAM concepts between the two interventions. These results can be used to guide the design and implementation of DfAM education.


Author(s):  
Farzaneh Kaji ◽  
Ahmad Barari

The final dimensional and geometric inaccuracies, and the resulting high surface roughness of the products have been the major problems in employing Additive Manufacturing (AM) technologies. Most of commonly used Additive manufacturing (AM) technologies are developed based on a layer-based manufacturing process to fabricate 3D models. The main critical issue in AM which reduces the surface integrity of the final products is the stair case error which happens due to layer by layer manufacturing process. A new method is presented to model the surface roughness of FDM parts based on considering a new geometry for the cusps. Variety of observations were conducted to model the exact geometry of the cusp. Considering that cusp geometry affects the surface roughness directly, the new geometry was used to predict the surface roughness distribution as a function of layer thickness and surface angle of the final FDM products. The model was validated by designing a set of experiments using 3D measurements of the surface roughness under high resolution surface topography device and the predicted model was in a good agreement with the experimental results.


2021 ◽  
Author(s):  
Fei Chen ◽  
DINESH PINISETTY ◽  
Nikhil Gupta

Abstract Additive manufacturing (AM) has been adopted for manufacturing complex shaped highly customized components for aerospace, automotive, and medical fields, where intellectual property protection and counterfeit detection are major concerns. New technologies such as Blockchain have been promising in supply chain authentication. However, AM due to layer-by-layer manufacturing process provides opportunities of embedding information inside the part during manufacturing, which has been explored recently to embed identification codes inside the parts. The present work studies the possibility of printing a barcode inside the additively manufactured part and develops a scheme to obfuscate the code design to read differently from different directions to enhance the security and protect the intellectual property. The embedded three-dimensional codes are scanned using a micro-CT scan. This scheme of embedded obfuscated codes proves to be a highly customizable and efficient process while securing product design files.


Author(s):  
Nashat Nawafleh ◽  
Jordan Chabot ◽  
Mutabe Aljaghtham ◽  
Cagri Oztan ◽  
Edward Dauer ◽  
...  

Abstract Additive manufacturing is defined as layer-by-layer deposition of materials on a surface to fabricate 3D objects with reduction in waste, unlike subtractive manufacturing processes. Short, flexible Kevlar fibers have been used in numerous studies to alter mechanical performance of structural components but never investigated within printed thermoset composites. This study investigates the effects of adding short Kevlar fibers on mechanical performance of epoxy thermoset composites and demonstrates that the addition of Kevlar by 5% in weight significantly improves flexure strength, flexural modulus, and failure strain by approximately 49%, 19%, and 38%, respectively. Hierarchical microstructures were imaged using scanning electron microscopy to observe the artefacts such as porosity, infill and material interdiffusion, which are inherent drawbacks of the 3D printing process.


Author(s):  
Mikhail Osanov ◽  
James K. Guest

The rapid advance of additive manufacturing technologies has provided new opportunities for creating complex structural shapes. In order to fully exploit these opportunities, however, engineers must re-think the design process and leverage these new capabilities while respecting manufacturing constraints inherent in various processes. Topology optimization, as a free-from design tool, is a potentially powerful approach to addressing this design challenge provided the manufacturing process is properly accounted for. This work examines geometric constraints related to feature size and the layer-by-layer nature of the manufacturing process. A simple modification to the Heaviside Projection Method, an approach for naturally achieving geometric constraints in topology optimization, is proposed and demonstrated to have clear, understandable impact on three-dimensional optimized beam designs.


2019 ◽  
Vol 269 ◽  
pp. 05002
Author(s):  
Priyantomo Agustinus Ananda

WAAM ( Wire + Arc Additive Manufacturing) is a process of adding material layer by layer in order to build a near net shape components. It shows a further promising future for fabricating large expensive metal components with complex geometry. Engineering Procurement and Construction (EPC) company as one of the industrial section which related with engineering design and products, wide range of material type, and shop based or site based manufacturing process have been dealing with conventional manufacturing and procurement process in order to fulfill its requirement for custom parts and items for the project completion purpose. During the conventional process, there is a risk during the transportation of the products from the manufacturing shop to then site project, this risk is even greater when the delivery time take part as one of the essential part which affect the project schedule. Wire Arc Additive Manufacturing process offering an alternative process to shorten the delivery time and process for a selected material and engineered items, with the consideration of essential variables which can affect the final products of WAAM process, such as : heat input, wire feed speed, travel speed, shielding gas, welding process and robotic system applied. In this paper, the possibilities of WAAM application in EPC company will be assessed, an in depth literature review of the various process which possible to applied, include the loss and benefit compared with conventional method will be presented. The main objective is to identify the current challenge and the prospect of WAAM application in EPC company.


Sign in / Sign up

Export Citation Format

Share Document