scholarly journals Genetic control of transition from juvenile to mature wood with respect to microfibril angle in Norway spruce (Picea abies) and lodgepole pine (Pinus contorta)

2018 ◽  
Vol 48 (11) ◽  
pp. 1358-1365 ◽  
Author(s):  
Haleh Hayatgheibi ◽  
Nils Erik Gustaf Forsberg ◽  
Sven-Olof Lundqvist ◽  
Tommy Mörling ◽  
Ewa J. Mellerowicz ◽  
...  

Genetic control of microfibril angle (MFA) transition from juvenile wood to mature wood was evaluated in Norway spruce (Picea abies (L.) Karst) and lodgepole pine (Pinus contorta Douglas ex Loudon). Increment cores were collected at breast height (1.3 m) from 5664 trees in two 21-year-old Norway spruce progeny trials in southern Sweden and from 823 trees in two lodgepole pine progeny trials, aged 34–35 years, in northern Sweden. Radial variations in MFA from pith to bark were measured for each core using SilviScan. To estimate MFA transition from juvenile wood to mature wood, a threshold level of MFA 20° was considered, and six different regression functions were fitted to the MFA profile of each tree after exclusion of outliers, following three steps. The narrow-sense heritability estimates (h2) obtained for MFA transition were highest based on the slope function, ranging from 0.21 to 0.23 for Norway spruce and from 0.34 to 0.53 for lodgepole pine, while h2 were mostly non-significant based on the logistic function, under all exclusion methods. Results of this study indicate that it is possible to select for an earlier MFA transition from juvenile wood to mature wood in Norway spruce and lodgepole pine selective breeding programs, as the genetic gains (ΔG) obtained in direct selection of this trait were very high in both species.

2018 ◽  
Author(s):  
Haleh Hayatgheibi ◽  
Nils Forsberg ◽  
Sven-Olof Lundqvist ◽  
Tommy Mörling ◽  
Ewa J. Mellerowicz ◽  
...  

AbstractGenetic control of microfibril angle (MFA) transition from juvenile to mature was evaluated in Norway spruce and lodgepole pine. Increment cores were collected at breast height from 5,618 trees in two 21-year-old Norway spruce progeny trials in southern Sweden, and from 823 trees in two 34-35 – year-old lodgepole pine progeny trials in northern Sweden. Radial variations in MFA from pith to bark were measured for each core using SilviScan. To estimate MFA transition from juvenile to mature, a threshold level of MFA 20° was considered and six different regression functions were fitted to the MFA profile of each tree after exclusion of outliers, following three steps. The narrow-sense heritability estimates (h2) obtained for MFA transition were highest based on the slope function, ranging from 0.21 to 0.23 for Norway spruce and from 0.34 to 0.53 for lodgepole pine, while h2 were mostly non-significant based on the logistic function, under all exclusion methods. Results of this study indicate that it is possible to select for an earlier MFA transition from juvenile to mature in Norway spruce and lodgepole pine selective breeding programs, as the genetic gains (∆G) obtained in direct selection of this trait were very high in both species.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Harri Mäkinen ◽  
Tuula Jyske ◽  
Pekka Saranpää

Abstract Variation of tracheid length was studied within individual annual rings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) from the pith to the bark. The material consisted of six Scots pine and six Norway spruce trees growing on sites of both low and high fertility. Microtome sections of 0.25 mm thick were cut from annual rings 7, 20 and 50 counted from the pith outwards, i.e., juvenile, transition and mature wood, respectively. After maceration, tracheid lengths were separately measured in each sample. In juvenile wood of Scots pine, tracheids were on average 17% longer in the latewood than in earlywood. However, in juvenile wood, the first formed earlywood tracheids were slightly longer than those in the middle of the earlywood zone. In the transition and mature wood of Scots pine, the increase in tracheid length was more gradual from earlywood to latewood, and no significant differences were found between earlywood and latewood. In Norway spruce, tracheids were 2–4% longer in the latewood than in earlywood. In general, tracheid length is highly variable within annual rings and the variation can differ from ring-to-ring even within the same tree.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Changqing Lu ◽  
Jun Wu ◽  
Qianqian Jiang ◽  
Yamei Liu ◽  
Liang Zhou ◽  
...  

AbstractThe proportion of juvenile wood affects the utilization of wood seriously, and the transition year of juvenile wood (JW) and mature wood (MW) plays a decisive role in the rotation and the modification of wood. To find out the demarcation of JW and MW, the tracheid length (TL) and microfibril angle (MFA) of early wood (EW) and late wood (LW) from four Chinese fir clones were measured by optical microscopy and X-ray diffraction. Then the data were analyzed by the k-means clustering method. The correlation and the differences among wood properties between JW and MW were compared. Results indicated that the LW showed better properties than that of EW, but the anatomical differences between EW and LW did not influence the demarcation of JW and MW. The cluster analysis of TL and MFA showed that the transition year was in the 16th year and the transition zone of EW and LW was different among clones. The MW has longer and wider tracheid, thicker cell walls, and smaller MFA. In terms of chemistry, MW had a higher content of holocellulose, α-cellulose, less content of extract, but no significant difference in lignin content compared with JW. The stabilization of chemical components was earlier than that of the anatomic properties. Correlation analysis showed that there were strong correlations between the chemical composition and anatomical characteristics in JW and MW. In general, compared with chemical components, anatomical indicators were more suitable for JW and MW demarcation. The differences and correlations between JW and MW properties provide a theoretical basis for wood rotation and planting.


1990 ◽  
Vol 5 (2) ◽  
pp. 40-42 ◽  
Author(s):  
A. D. Yanchuk ◽  
M. R. Carlson ◽  
J. C. Murphy

Abstract Two 8-year-old grafted ramets from 12 lodgepole pine (Pinus contorta var. latifolia) ortets (wild stand parent trees) were sampled at each of three sites and were assessed for specific gravity with small diameter cores. The broad-sense heritability estimate from the analysis of variance was 0.62, but estimates derived by regressing clone means from ramets on ortet values were 0.49 and 0.54 for juvenile and mature wood, respectively. This relatively high repeatability for specific gravity suggests wild-stand ortet values may be useful for identifying low specific gravity clones in seed orchards, or potential low specific gravity families in breeding populations of lodgepole pine. West. J. Appl. For. 5(2):40-42, April 1990.


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 532-538 ◽  
Author(s):  
Dinesh Fernando ◽  
Peter Rosenberg ◽  
Erik Persson ◽  
Geoffrey Daniel

Abstract A study was performed on stone groundwood (SGW) pulps produced on a pilot scale. The behaviour of selected juvenile and mature Norway spruce wood samples was investigated. As revealed by standard tests, sheets formed from juvenile wood showed improved light scattering properties, improved tear and tensile strength, and higher sheet density compared to those formed from mature wood. Scanning electron microscopy indicated that the differences are likely related to the manner of fibre processing and development at the ultrastructural level. Mature wood fibres showed greater fibre end breakage, a smaller long-fibre fraction, enhanced S1 fibrillation and frequently open fibres. In contrast, juvenile fibres had a 14% higher long-fibre fraction and showed typical S2 fibrillation. Fibre development of juvenile wood showed fibrillation features similar to those previously reported for thermomechanical pulp fibres. In both cases, the structural hierarchy of the wood fibre cell wall and the microfibril angle of S2 and S1 layers govern cell-wall splitting and fibrillation progression. The superior quality of the fibre furnish prepared from juvenile fibres compared to mature fibres with SGW pulping may offer an alternative process for more effective utilisation of raw materials such as top logs rich in juvenile wood.


2015 ◽  
Vol 39 (4) ◽  
pp. 751-758 ◽  
Author(s):  
Jerome Alteyrac

ABSTRACTFour stands of 28-year-old radiata pine (Pinus radiata D. Don) grown in the eighth region (Biobio) of Chile were sampled to determine the effect of tree spacing on the microfibril angle. The samples were taken at two different stem levels of the tree, 2.5 m and 7.5 m, with increment strip taken in the Nothern direction. The four experimental stands were characterized by the following spacing 2x2, 2x3, 3x4 and 4x4. The microfibril angle was measured by X-ray diffraction with the SilviScan technology at the FP-Innovation-Paprican Division in Vancouver, Canada. The results showed a significant effect of tree spacing on the microfibril angle in both juvenile wood and mature wood as well as at the two stem levels considered. The minimum (9.42º) was reached in 2x2 stand at 7.5 m in mature wood, while maximum microfibril angle (24.54º) was obtained in 2x3 stand at 2.5 m in juvenile wood. Regarding the effect of tree spacing, 4x4 stand had the lowest microfibril angle,except in mature wood at 7.5 m where 4x4 had the highest microfibril angle (11°) of the four stands.


2017 ◽  
Vol 47 (10) ◽  
pp. 1303-1313 ◽  
Author(s):  
Haleh Hayatgheibi ◽  
Anders Fries ◽  
Johan Kroon ◽  
Harry X. Wu

Potential improvement of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) solid-wood properties was examined by estimating age trends of inheritance, age–age genetic correlations, and the efficiency of early selection using 823 increment cores sampled from 207 half-sib families at two independent progeny trials, aged 34–35 years, located in northern Sweden. High-resolution radial variation of annual ring width, wood density, microfibril angle (MFA), and modulus of elasticity (clearwood stiffness; MOES) was measured using SilviScan. The dynamic stiffness (MOEtof) of standing trees was also obtained using Hitman ST300. Heritabilities ranged from 0.10 to 0.64 for growth and earlywood, transition-wood, and latewood proportions, from 0.29 to 0.77 for density traits, and from 0.13 to 0.33 for MFA and stiffness traits. Genetic correlations between early age and the reference age (26 years) suggested that early selection is efficient at age 4 years for MFA and between ages 5 to 8 years for density and MOES. Unfavorable diameter–stiffness genetic correlations and correlated responses indicate that breeding for a 1% increase in diameter would confer 5.5% and 2.3% decreases in lodgepole pine MOES and MOEtof, respectively. Index selection with appropriate economical weights for growth and wood stiffness is highly recommended for selective breeding.


IAWA Journal ◽  
2015 ◽  
Vol 36 (4) ◽  
pp. 428-442 ◽  
Author(s):  
Wayan Darmawan ◽  
Dodi Nandika ◽  
Rita Kartika Sari ◽  
Annisah Sitompul ◽  
Istie Rahayu ◽  
...  

Teak wood (Tectona grandis) as an important forest resource in Indonesia has been processed to wood furniture in large quantities to fulfill an increasing need of both local and international consumers. To satisfy the increasing demand for wood products, teak wood has been supplied from the State forests (Perhutani) and Community teak plantations. Community teak has been harvested at shorter age rotations (7–10 years) than Perhutani teak (40–60 years). This paper discusses the occurrence and characteristics of juvenile wood in Perhutani and Community teak based on density, shrinkage, bending strength (modulus of rupture - MOR, modulus of elasticity - MOE), fiber length, and microfibril angle (MFA). A segmented modeling approach was used to find the juvenile mature transition. Fiber length and MFA appear to be good anatomical indicators of radial increment demarcation between juvenile and mature wood, although maturation radial increment varies slightly between the fiber length and MFA. The use of radial increment density, shrinkage, MOR, and MOE were not appropriate, because of low coefficients of determination and a large range of radial increment for transition from juvenile to mature wood. The maturations were estimated to start at radial increments 10 and 14 cm from the pith by fiber length, and 11 and 15 cm from the pith by MFA for Perhutani and Community teak, respectively. The projected figures for the proportion of juvenile wood at breast height for Perhutani and Community teak were 65% and 100%, respectively. The results also indicate that short-rotation Community teak was not remarkably inferior in shrinkage, MOE and MOR compared to Perhutani teak, although it was less dense, less attractive and less durable due to lower heartwood content. Therefore, careful attention should be given to the use of the Community teak in some wood-processing technologies.


Holzforschung ◽  
2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Shawn D. Mansfield ◽  
Roberta Parish ◽  
C. Mario Di Lucca ◽  
James Goudie ◽  
Kyu-Young Kang ◽  
...  

AbstractIn an attempt to examine the dynamic inter-relationship among wood density and fibre traits [tracheid length and microfibril angle (MFA)] in lodgepole pine (Pinus contorta), 60 trees were sampled in three age classes from four sites in central British Columbia. Breast height discs were taken and relative wood density was measured along two radii. Tracheid length was assessed on isolated 5-year increments from pith to bark at breast height for each tree. MFA was determined every 50 μm and the 5-mm composite intervals from pith to bark per disc at breast height were used in the analysis. Segmented regression was employed to identify the “juvenile to mature wood” transition point, which revealed transition ages of 31, 18 and 15 for wood density, fibre length and MFA, respectively. These traits were related to primary growth, expressed as area increment, ring width, percent earlywood and height increment during the juvenile wood phase. Comparisons of wood and fibre traits showed a higher congruence between the time of transitions for fibre length and MFA (Pearson correlation coefficient 0.52) than that between fibre length and wood density (0.07), and MFA and wood density (0.16). The cessation of early rapid radial increment growth terminated before wood and fibre transitions to mature wood occurred. Fibre length was significantly, but not strongly, related to ring width and percent earlywood (0.35 for both). The duration of juvenile fibre production was not significantly related to height growth.


Sign in / Sign up

Export Citation Format

Share Document