scholarly journals Adaptation and convergence in circadian‐related genes in Iberian freshwater fish

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
João M. Moreno ◽  
Tiago F. Jesus ◽  
Maria M. Coelho ◽  
Vitor C. Sousa

Abstract Background The circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock – positive loop) and repress expression (cryptochrome (cry) and period (per) – negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g., light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type. Results We identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in 12 of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop, with 55 putatively adaptive substitutions, 16 located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence. We found evidence for increased nonsynonymous substitution rate in convergent lineages, likely due to positive selection at 27 sites, mostly in cry genes. Conclusions Our results support that temperature may be a selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.

2021 ◽  
Author(s):  
João M Moreno ◽  
Tiago F Jesus ◽  
Maria M Coelho ◽  
Vitor C Sousa

Abstract BackgroundThe circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock – positive loop) and repress expression (cryptochrome (cry) and period (per) – negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g., light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type. ResultsWe identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in 12 of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop of the cycle, with 55 putatively adaptive substitutions, 16 located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence. We found evidence for increased nonsynonymous substitution rate in convergent lineages, likely due to positive selection at 27 sites, mostly in cry genes. ConclusionsOur results support that temperature may be a selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.


2019 ◽  
Author(s):  
João M Moreno ◽  
Tiago F Jesus ◽  
Vitor C Sousa ◽  
Maria M Coelho

ABSTRACTBackgroundThe circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock – positive loop) and repress expression (cryptochrome (cry) and period (per) – negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g. light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type.ResultsWe identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in nine of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop of the cycle, with 11 putatively adaptive substitutions mostly located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence.ConclusionsOur results support that temperature may be a strong selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we also uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.


2020 ◽  
Author(s):  
João M Moreno ◽  
Tiago F Jesus ◽  
Vitor C Sousa ◽  
Maria M Coelho

Abstract BackgroundThe circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock – positive loop) and repress expression (cryptochrome (cry) and period (per) – negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g. light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type. ResultsWe identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in nine of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop of the cycle, with 11 putatively adaptive substitutions mostly located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence.ConclusionsOur results support that temperature may be a strong selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we also uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.


2019 ◽  
Vol 1 (1) ◽  
pp. 47-55
Author(s):  
Masitta Tanjung

Snakehead fish (Channa striata) is one of the freshwater fish in tropical regions such as Asia and Africa, and has high nutrition but is difficult to cultivate. In Indonesia, Snakehead fish are found in paddy fields, swamps and ditches, making them susceptible to parasites. Constraints in Snakehead fish cultivation are caused by the nature of the fish as a predatory, lack of the availability of food and environmental conditions that can affect the growth of the fish. The former paddy fields in Seuneubok Cina of Indra Makmur, Aceh Timur, Indonesia, is found many Snakehead fish. This research aims to determine the types of parasites that infect Snakehead fish. The Snakehead fish was taken using electrofishing gear with purposive sampling method, then dissected and identified the endoparasites which contained in the fish intestines. The research results found three genus of parasites: Pallisentis, Procamallanus and Camallanus.


Author(s):  
Somaye A. Mohamadi ◽  
Abdulraheem J. Ahmed

<span>Despite their complexity and uncertainty, air conditioning systems should provide the optimal thermal conditions in a building. These controller systems should be adaptable to changes in environmental parameters. In most air conditioning systems, today, there are On/Off controllers or PID in more advanced types, which, due to different environmental conditions, are not optimal and cannot provide the optimal environmental conditions. Controlling thermal comfort of an air conditioning system requires estimation of thermal comfort index. In this study, fuzzy controller was used to provide thermal comfort in an air conditioning system, and neural network was used to estimate thermal comfort in the feedback path of the controller. Fuzzy controller has a good response given the non-linear features of air conditioning systems. In addition, the neural network makes it possible to use thermal comfort feedback in a real-time control.</span>


2018 ◽  
pp. 194-199 ◽  
Author(s):  
Iwona Jaskulska ◽  
Lech Gałęzewski ◽  
Mariusz Piekarczyk ◽  
Dariusz Jaskulski

The emergence of plants is especially important for the winter crops that are grown in the challenging environmental conditions of many countries in Central and Eastern Europe. The emergence and initial growth of winter rapeseed were compared in field trials in a randomized block design with three replicates for plants sown in conventional tillage systems (CT) and strip-till (ST), which had different weather conditions and on soil with a non-uniform texture over a period of two years. Sowing in the CT was carried out using Horsch Pronto 4DC (Germany) at a row distance of 0.29 m. The ST operations were performed using a Pro-Til 4T drill manufactured by Mzuri Limited (Great Britain) - row spacing of 0.36 m. In favourable rainfall and thermal conditions, the density of winter rapeseed plants two weeks after sowing was found to be higher if it was sown after the CT than in the ST system. In the year that had a serious shortage of rainfall during the sowing period, a considerably higher density of plants was achieved using the ST system. The uniformity of plant growth using the ST technology in soil with a varied texture, especially in a year with an unfavourable distribution of rainfall, was proven by less variability in the number of leaves in the rosette, in the dry mass of the leaf rosette and in the root neck thickness of the winter rapeseed than in the CT system. The ST system can create good conditions for the initial development and preparation of rapeseed plants for wintering.


Hydrobiologia ◽  
2013 ◽  
Vol 719 (1) ◽  
pp. 317-329 ◽  
Author(s):  
Sean M. Marr ◽  
Julian D. Olden ◽  
Fabien Leprieur ◽  
Ivan Arismendi ◽  
Marko Ćaleta ◽  
...  

1971 ◽  
Vol 10 (60) ◽  
pp. 363-373
Author(s):  
John Shaw

AbstractA record of sedimentation from pro-glacial sandur deposits through pro-glacial lake deposits to final deposition of till is used to interpret changing environmental conditions, and depositional processes, during the development of the “Little Welsh Advance” in the Shrewsbury area, England. The relationship between lacustrine sediments and till establishes till deposition by flowage. However, the most important conclusions are derived from the deduction that lacustrine sediments were incorporated into the basal part of the ice sheet and transported across previously deposited end moraines. A discussion of this deduction, based on the findings of Weertman (1961), establishes that during the advancing phase the ice sheet was of the polar type. Final melting is thought to have occurred by both top-melt and under-melt as a result of climatic amelioration.


Water ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 259 ◽  
Author(s):  
Matthew Deitch ◽  
Michele Sapundjieff ◽  
Shane Feirer

The Mediterranean climate is principally characterized by warm, dry summers and cool, wet winters. However, there are large variations in precipitation dynamics in regions with this climate type. We examined the variability of precipitation within and among Mediterranean-climate areas, and classified the Mediterranean climate as wet, moderate, or dry based on annual precipitation; and strongly, moderately, or weakly seasonal based on percentage of precipitation during summer. Mediterranean biomes are mostly dry (<700 mm annually) but some areas are wet (>1300 mm annually); and many areas are weakly seasonal (>12% of annual precipitation during summer). We also used NOAA NCDC climate records to characterize interannual variability of annual and dry-season precipitation, as well as trends in annual, winter, and dry-season precipitation for 337 sites that met the data quality criteria from 1975 to 2015. Most significantly, sites in many Mediterranean-climate regions show downward trends in annual precipitation (southern California, Spain, Australia, Chile, and Northern Italy); and most of North America, the Mediterranean basin, and Chile showed downward trends in summer precipitation. Variations in annual and summer precipitation likely contribute to the high biodiversity and endemism characteristic of Mediterranean-climate biomes; the data indicate trends toward harsher conditions over the past 40 years.


2005 ◽  
Vol 95 (11) ◽  
pp. 1279-1286 ◽  
Author(s):  
E. Gamliel-Atinsky ◽  
D. Shtienberg ◽  
H. Vintal ◽  
Y. Nitzni ◽  
A. Dinoor

Temperature and wetness conditions required for development and maturation of Didymella rabiei pseudothecia were determined in a series of experiments conducted in controlled-environmental conditions. Initial stages of pseudothecium formation occurred at temperatures ranging from 5 to 15°C. Incubation at low temperatures was essential for subsequent pseudothecium maturation. This requirement was satisfied for chickpea stem segments incubated at 5 or 10°C for three consecutive weeks or during periods of 3 or 5 days, separated by periods at higher temperatures. Following the low-temperature requirement, subsequent pseudothecium development was independent of temperature in the range tested (5 to 20°C). Wetness was essential for pseudothecium production: pseudothecia formed and matured on stem segments maintained continuously wet but also on those exposed to periods of three or five wet days, separated by dry periods. The dispersal of D. rabiei ascospores was studied using chickpea plants as living traps in the field. Trap plants were infected mainly when exposed during rain but also in rainless periods. Results of this study enabled us to describe the developmental events leading to the production of the teleomorph stage and the dispersal of ascospores by D. rabiei in the Mediterranean climate of Israel.


Sign in / Sign up

Export Citation Format

Share Document