scholarly journals Seeing through sedimented waters: environmental DNA reduces the phantom diversity of sharks and rays in turbid marine habitats

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yin Cheong Aden Ip ◽  
Jia Jin Marc Chang ◽  
Kelvin K. P. Lim ◽  
Zeehan Jaafar ◽  
Benjamin J. Wainwright ◽  
...  

Abstract Background Sharks and rays are some of the most threatened marine taxa due to the high levels of bycatch and significant demand for meat and fin-related products in many Asian communities. At least 25% of shark and ray species are considered to be threatened with extinction. In particular, the density of reef sharks in the Pacific has declined to 3–10% of pre-human levels. Elasmobranchs are thought to be sparse in highly urbanised and turbid environments. Low visibility coupled with the highly elusive behaviour of sharks and rays pose a challenge to diversity estimation and biomonitoring efforts as sightings are limited to chance encounters or from carcasses ensnared in nets. Here we utilised an eDNA metabarcoding approach to enhance the precision of elasmobranch diversity estimates in urbanised marine environments. Results We applied eDNA metabarcoding on seawater samples to detect elasmobranch species in the hyper-urbanised waters off Singapore. Two genes—vertebrate 12S and elasmobranch COI—were targeted and amplicons subjected to Illumina high-throughput sequencing. With a total of 84 water samples collected from nine localities, we found 47 shark and ray molecular operational taxonomic units, of which 16 had species-level identities. When data were compared against historical collections and contemporary sightings, eDNA detected 14 locally known species as well as two potential new records. Conclusions Local elasmobranch richness uncovered by eDNA is greater than the seven species sighted over the last two decades, thereby reducing phantom diversity. Our findings demonstrate that eDNA metabarcoding is effective in detecting shark and ray species despite the challenges posed by the physical environment, granting a more consistent approach to monitor these highly elusive and threatened species.

2021 ◽  
pp. 1-10
Author(s):  
Micheline Carvalho-Silva ◽  
Luiz Henrique Rosa ◽  
Otávio H.B. Pinto ◽  
Thamar Holanda Da Silva ◽  
Diego Knop Henriques ◽  
...  

Abstract The few Antarctic studies to date to have applied metabarcoding in Antarctica have primarily focused on microorganisms. In this study, for the first time, we apply high-throughput sequencing of environmental DNA to investigate the diversity of Embryophyta (Viridiplantae) DNA present in soil samples from two contrasting locations on Deception Island. The first was a relatively undisturbed site within an Antarctic Specially Protected Area at Crater Lake, and the second was a heavily human-impacted site in Whalers Bay. In samples obtained at Crater Lake, 84% of DNA reads represented fungi, 14% represented Chlorophyta and 2% represented Streptophyta, while at Whalers Bay, 79% of reads represented fungi, 20% represented Chlorophyta and < 1% represented Streptophyta, with ~1% of reads being unassigned. Among the Embryophyta we found 16 plant operational taxonomic units from three Divisions, including one Marchantiophyta, eight Bryophyta and seven Magnoliophyta. Sequences of six taxa were detected at both sampling sites, eight only at Whalers Bay and two only at Crater Lake. All of the Magnoliophyta sequences (flowering plants) represent species that are exotic to Antarctica, with most being plausibly linked to human food sources originating from local national research operator and tourism facilities.


2020 ◽  
Vol 8 (4) ◽  
pp. 506
Author(s):  
Florian Prodinger ◽  
Hisashi Endo ◽  
Yasuhiro Gotoh ◽  
Yanze Li ◽  
Daichi Morimoto ◽  
...  

Mimiviridae is a group of viruses with large genomes and virions. Ecological relevance of Mimiviridae in marine environments has been increasingly recognized through the discoveries of novel isolates and metagenomic studies. To facilitate ecological profiling of Mimiviridae, we previously proposed a meta-barcoding approach based on 82 degenerate primer pairs (i.e., MEGAPRIMER) targeting the DNA polymerase gene of Mimiviridae. The method detected a larger number of operational taxonomic units (OTUs) in environmental samples than previous methods. However, it required large quantities of DNA and was laborious due to the use of individual primer pairs. Here, we examined coastal seawater samples using varying PCR conditions and purification protocols to streamline the MEGAPRIMER method. Mixing primer pairs in “cocktails” reduced the required amount of environmental DNA by 90%, while reproducing the results obtained by the original protocol. We compared the results obtained by the meta-barcoding approach with quantifications using qPCR for selected OTUs. This revealed possible amplification biases among different OTUs, but the frequency profiles for individual OTUs across multiple samples were similar to those obtained by qPCR. We anticipate that the newly developed MEGAPRIMER protocols will be useful for ecological investigation of Mimiviridae in a larger set of environmental samples.


2020 ◽  
Vol 287 (1930) ◽  
pp. 20200248 ◽  
Author(s):  
Jean-Baptiste Juhel ◽  
Rizkie S. Utama ◽  
Virginie Marques ◽  
Indra B. Vimono ◽  
Hagi Yulia Sugeha ◽  
...  

Environmental DNA (eDNA) has the potential to provide more comprehensive biodiversity assessments, particularly for vertebrates in species-rich regions. However, this method requires the completeness of a reference database (i.e. a list of DNA sequences attached to each species), which is not currently achieved for many taxa and ecosystems. As an alternative, a range of operational taxonomic units (OTUs) can be extracted from eDNA metabarcoding. However, the extent to which the diversity of OTUs provided by a limited eDNA sampling effort can predict regional species diversity is unknown. Here, by modelling OTU accumulation curves of eDNA seawater samples across the Coral Triangle, we obtained an asymptote reaching 1531 fish OTUs, while 1611 fish species are recorded in the region. We also accurately predict ( R ² = 0.92) the distribution of species richness among fish families from OTU-based asymptotes. Thus, the multi-model framework of OTU accumulation curves extends the use of eDNA metabarcoding in ecology, biogeography and conservation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuhiko Hoshino ◽  
Ryohei Nakao ◽  
Hideyuki Doi ◽  
Toshifumi Minamoto

AbstractThe combination of high-throughput sequencing technology and environmental DNA (eDNA) analysis has the potential to be a powerful tool for comprehensive, non-invasive monitoring of species in the environment. To understand the correlation between the abundance of eDNA and that of species in natural environments, we have to obtain quantitative eDNA data, usually via individual assays for each species. The recently developed quantitative sequencing (qSeq) technique enables simultaneous phylogenetic identification and quantification of individual species by counting random tags added to the 5′ end of the target sequence during the first DNA synthesis. Here, we applied qSeq to eDNA analysis to test its effectiveness in biodiversity monitoring. eDNA was extracted from water samples taken over 4 days from aquaria containing five fish species (Hemigrammocypris neglectus, Candidia temminckii, Oryzias latipes, Rhinogobius flumineus, and Misgurnus anguillicaudatus), and quantified by qSeq and microfluidic digital PCR (dPCR) using a TaqMan probe. The eDNA abundance quantified by qSeq was consistent with that quantified by dPCR for each fish species at each sampling time. The correlation coefficients between qSeq and dPCR were 0.643, 0.859, and 0.786 for H. neglectus, O. latipes, and M. anguillicaudatus, respectively, indicating that qSeq accurately quantifies fish eDNA.


2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 241-252
Author(s):  
Dyah Asri Handayani Taroepratjeka ◽  
Tsuyoshi Imai ◽  
Prapaipid Chairattanamanokorn ◽  
Alissara Reungsang

Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized, extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon, Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities, strategies can be developed to increase biohydrogen molar yield.


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 29-40 ◽  
Author(s):  
Sten Anslan ◽  
R. Henrik Nilsson ◽  
Christian Wurzbacher ◽  
Petr Baldrian ◽  
Leho Tedersoo ◽  
...  

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.


Author(s):  
E. A. Selivanova ◽  
Yu. A. Khlopko ◽  
N. E. Gogoleva ◽  
A. O. Plotnikov

Aim. To indicate potentially pathogenic bacteria in plankton of the brackish rivers flowing into the Elton Lake by high-throughput sequencing of 16S ssuRNA gene. Materials and methods. The water samples from brackish rivers Lantsug and Chernavka, flowing into the Elton Lake, were taken up in a volume of 50 ml, filtered through membrane filters (pore diameter - 0.22 pm). Total DNAwas obtained by phenol-chloroform extraction with preliminary homogenization and enzymatic lysis. DNA libraries for sequencing were created by protocol Illumina with primers to a variable V3-V4 region of 16S ssuRNA gene. Sequencing was performed on a platform MiSeq («Illumina», США). Results.There were found the phylotypes of potentially pathogenic bacteria of Proteobacteria phylum from the families Enterobacteriaceae, Pseudomonadaceae, Campylobacteraceae, Vibrionaceae, Aeromonadaceae, Moraxellaceae, Legionellaceae, Alcaligenaceae, Campylobacteraceae, and also of Firmicutes, Bacteroidetes, Actinobacteria phyla in the plankton samples of the brackish rivers. Probable source of bacterial contamination is large and small cattle. Conclusion. These data demonstrate that the continental brackish waters, along with freshwater and marine habitats perform a reservoir function to potentially pathogenic microorganisms. High-throughput sequencing can be used to screen the presence of pathogens in water.


2021 ◽  
Author(s):  
Sofia Rigou ◽  
Eugene Christo-Foroux ◽  
Sebastien Santini ◽  
Artemiy Goncharov ◽  
Jens Strauss ◽  
...  

Background: Antimicrobial resistance is one of the major challenges affecting public health. It is mostly due to the continuous emergence of extended-spectrum beta-lactamase from various environments followed by their rapid dissemination and selection in clinical settings. The warming of Earth' s climate is the other global threat facing human society, in particular with the Arctic regions experiencing a twice faster warming than the global average and permafrost affected by widespread thawing. A potentially dreadful combination of these two threats would be the release and dispersion of harmful microbes that have remained confined to largely uninhabited Arctic regions, or are stored dormant in permafrost. Methods: Environmental DNA was isolated from 12 soil samples from various Arctic and subarctic pristine regions in Siberia (Yakutia and Kamchatka), including 9 permafrost samples collected at various depths. The large datasets obtained from high throughput sequencing was assembled in contigs and their protein-gene contents predicted. We used exhaustive similarity searches to perform taxonomical assignments of bacterial, archaeal, and eukaryotic organisms, as well as DNA viruses. In addition, we specifically identified beta-lactamase genes and their prevalence per bacterial genome estimated through the detection of two universal single copy genes. Findings: A total of 9.217 1011 bp were exploited, leading to a total of 525,313 contigs at least 5kb in size. The DNA content of the various samples was found to be highly variable, not strictly correlated with the depth or radio-carbon-based deposit age, and most likely linked to the global density of microbes trapped in the corresponding permafrost layers. Bacteria account for more than 90% of the contigs in most samples, followed by Eukaryotes and Archaea (always lower than 10%). Viruses represented less than 2% of all contigs in all samples. The taxonomic profiles of surface cryosoils and deep permafrost samples exhibited a high diversity, including between permafrost samples originating from various depths in the same borehole. In all samples, bacterial contigs carrying different beta-lactamases from class A to D were identified. Interpretation: No clear common taxonomic feature could be found shared by surface cryosoils or ancient permafrost layers. However, most samples (9/12) exhibited a high frequency of beta-lactamase genes, with an estimated average close to 1 copy/bacterial genome. In addition to the well-documented reactivation of infectious ancient pathogens (bacteria, viruses, protozoa), we show now that global warming could contribute to the emergence of new antibiotic resistances through the mobilization by contemporary bacteria of ancient DNA released from thawing permafrost.


2013 ◽  
Vol 79 (22) ◽  
pp. 6894-6902 ◽  
Author(s):  
Kelley A. Gallagher ◽  
Kristin Rauscher ◽  
Laura Pavan Ioca ◽  
Paul R. Jensen

ABSTRACTStreptomycesspecies dedicate a large portion of their genomes to secondary metabolite biosynthesis. A diverse and largely marine-derived lineage within this genus has been designated MAR4 and identified as a prolific source of hybrid isoprenoid (HI) secondary metabolites. These terpenoid-containing compounds are common in nature but rarely observed as bacterial secondary metabolites. To assess the phylogenetic diversity of the MAR4 lineage, complementary culture-based and culture-independent techniques were applied to marine sediment samples collected off the Channel Islands, CA. The results, including those from an analysis of publically available sequence data and strains isolated as part of prior studies, placed 40 new strains in the MAR4 clade, of which 32 originated from marine sources. When combined with sequences cloned from environmental DNA, 28 MAR4 operational taxonomic units (0.01% genetic distance) were identified. Of these, 82% consisted exclusively of either cloned sequences or cultured strains, supporting the complementarity of these two approaches. Chemical analyses of diverse MAR4 strains revealed the production of five different HI structure classes. All 21 MAR4 strains tested produced at least one HI class, with most strains producing from two to four classes. The two major clades within the MAR4 lineage displayed distinct patterns in the structural classes and the number and amount of HIs produced, suggesting a relationship between taxonomy and secondary metabolite production. The production of HI secondary metabolites appears to be a phenotypic trait of the MAR4 lineage, which represents an emerging model with which to study the ecology and evolution of HI biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document