scholarly journals HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yue Liu ◽  
Xiaoyun Zhou ◽  
Wenbo Liu ◽  
Jiamin Huang ◽  
Qinghuan Liu ◽  
...  

Abstract Background Harpins are proteins secreted by the type III secretion system of Gram-negative bacteria during pathogen–plant interactions that can act as elicitors, stimulating defense and plant growth in many types of non-host plants. Harpin-treated plants have higher resistance, quality and yields and, therefore, harpin proteins may potentially have many valuable agricultural applications. Harpins are characterized by high thermal stability at 100 °C. However, it is unknown whether harpins are still active at temperatures above 100 °C or whether different temperatures affect the activity of the harpin protein in different ways. The mechanism responsible for the heat stability of harpins is also unknown. Results We identified a novel harpin, HpaXpm, from the cassava blight bacteria Xanthomonas phaseoli pv. manihotis HNHK. The predicted secondary structure and 3-D structure indicated that the HpaXpm protein has two β-strand domains and two major α-helical domains located at the N- and C-terminal regions, respectively. A phylogenetic tree generated using the maximum likelihood method grouped HpaXpm in clade I of the Hpa1 group along with harpins produced by other Xanthomonas spp. (i.e., HpaG-Xag, HpaG-Xcm, Hpa1-Xac, and Hpa1Xm). Phenotypic assays showed that HpaXpm induced the hypersensitive response (HR), defense responses, and growth promotion in non-host plants more effectively than Hp1Xoo (X. oryzae pv. oryzae). Quantitative real-time PCR analysis indicated that HpaXpm proteins subjected to heat treatments at 100 °C, 150 °C, or 200 °C were still able to stimulate the expression of function-related genes (i.e., the HR marker genes Hin1 and Hsr203J, the defense-related gene NPR1, and the plant growth enhancement-related gene NtEXP6); however, the ability of heat-treated HpaXpm to induce HR was different at different temperatures. Conclusions These findings add a new member to the harpin family. HpaXpm is heat-stable up to 200 °C and is able to stimulate powerful beneficial biological functions that could potentially be more valuable for agricultural applications than those stimulated by Hpa1Xoo. We hypothesize that the extreme heat resistance of HpaXpm is because the structure of harpin is very stable and, therefore, the HpaXpm structure is less affected by temperature.

2021 ◽  
pp. 118234
Author(s):  
Yunlong Yang ◽  
Linyan Fu ◽  
Xuefei Ren ◽  
Yingjie Zhu ◽  
Jiajie Zhu ◽  
...  

2019 ◽  
Vol 7 (8) ◽  
pp. 2385-2393 ◽  
Author(s):  
Mao Xia ◽  
Xianbo Wu ◽  
Yuan Zhong ◽  
Zhi Zhou ◽  
Wai-Yeung Wong

The thermal stability of Na3La(PO4)2:Eu phosphors can be enhanced by Li ion doping due to crystal defects.


2006 ◽  
Vol 503-504 ◽  
pp. 511-514
Author(s):  
Bi Shi ◽  
Hong Wei Song ◽  
Jun Bao Zhang ◽  
Han-Qing Cao ◽  
Xiu Fang Wang

In the present work, low carbon low alloy submicro-steel sheet has been developed successfully by severe warm-rolling (SWR) at 500 °C through a single pass. The result shows submicro-structure can be fabricated by severe rolling. The formation of the submicro-structure is attributed to the grain refinement mechanism induced by the severe plastic deformation (SPD). The refinement involves the cutting and subdividing of the original micro-crystals into ultrafine grains by dense dislocation arrays. To a certain extent, dynamic recrystallization in ferrite during SWR also seems to contribute to the formation of the submicro-structure. The thermal stability of the submicro-steel was investigated by annealing the steel at different temperatures. The investigation indicated that the submicro-steel can be subjected to annealing at 550°C without apparent grain growth. The unusually high thermal stability can be attributed to the pining effect of numerous uniformly distributed nano-precipitates in the steel. The sizes of the nano-precipitates belong to two different orders. The average diameter of the large precipitates is about 30 nm and the smaller one less than 10 nm.


Author(s):  
Sheng-Chieh Lin ◽  
Yu-Chieh Cheng ◽  
Man-Kit Leung ◽  
Jiun-Haw Lee ◽  
Tien-Lung Chiu

2008 ◽  
Vol 54 (10) ◽  
pp. 861-867 ◽  
Author(s):  
Kanchalee Jetiyanon ◽  
Sakchai Wittaya-Areekul ◽  
Pinyupa Plianbangchang

The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P ≤ 0.05) seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4439
Author(s):  
Shui-Yang Lien ◽  
Yu-Hao Chen ◽  
Wen-Ray Chen ◽  
Chuan-Hsi Liu ◽  
Chien-Jung Huang

In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide (CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum dots could enhance thermal stability and improve surface defects. The electron mobility of the doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic quantum dot doped organic perovskite thin films.


2011 ◽  
Vol 11 (5) ◽  
pp. 4639-4643 ◽  
Author(s):  
Chang-Hun Seok ◽  
Young-Il Park ◽  
Soo-Kang Kim ◽  
Ji-Hoon Lee ◽  
Jongwook Park

Sign in / Sign up

Export Citation Format

Share Document