scholarly journals Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuan Li ◽  
Wenquan Niu ◽  
Xiaoshu Cao ◽  
Jingwei Wang ◽  
Mingzhi Zhang ◽  
...  
2019 ◽  
Vol 72 (3) ◽  
Author(s):  
Hassan Zamani ◽  
Mohammad Javad Arvin ◽  
Abdolhossein Aboutalebi Jahromi ◽  
Vahid Abdossi ◽  
Ali Mohammadi Torkashvand

Soil and water salinities have become a major problem for agricultural activities as they can negatively affect crop yield in different ways. The present study aimed to investigate the effect of methyl jasmonate (MeJA) and sodium silicate (Si) on the content of selected mineral elements in the leaves of tomato plants (<em>Solanum lycopersicum</em> L.) under salinity stress. A fully randomized block experimental design was used with three factors, including three levels of salinity (0, 4, and 6 dS m<sup>−1</sup>), Si (0, 4, and 8 mM), and MeJA (0, 5, and 7.5 µM). Main plots were allocated to the three levels of salinity and the subplots were devoted to MeJA and Si levels. An increase in MeJA concentration was related to an 8.5% increase in leaf P content. When MeJA was applied at high salinity levels, the Na, Ca, and Mn concentrations decreased, but Fe increased. The application of 8 mM Si reduced the concentration of Cl by 50% at a salinity level of 4 dS m<sup>−1</sup> in plants not treated with MeJA. The triple interaction of the factors was significant for K, Mg, and Cl (<em>p</em> &lt; 0.01). Furthermore, the treatments used did induce significant differences in leaf Zn and N concentrations. The results indicate that MeJA and Si can partially mitigate the adverse impacts of salinity stress and contribute to an increased uptake of nutrients under saline conditions.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


2020 ◽  
pp. 1-14
Author(s):  
Alaa Ibrahim ◽  
Jamal Elfaki

A greenhouse experiment was carried out to evaluate the response of tomato (Solanum lycopersicum) to saline water irrigation under soilless and traditional techniques. A special fertigation technique with two different salinity levels (1 dS m-1 and 4 dS m-1) of water was used under different soilless media, namely, perlite, gravel, and pozzolana as inert media, in addition to traditional techniques. Results showed that among the three soilless substrates, perlite medium produced the highest total yields with larger fruit sizes. Furthermore, the perlite medium enabled significant savings in water, compared to gravel (-15%) and pozzolana (-20%). Moreover, the results corroborated the existing knowledge on the tolerance of tomato to brackish water irrigation, since there was no significant difference in yield of plants grown in the soil irrigated with water with salinity levels of 1.1   dSm-1 and 4-5  dS m-1. Plant biometric data revealed a better and quicker development of plants grown in the soilless media compared to those grown in the soil, even in the case of freshwater irrigation.


2021 ◽  
Vol 68 (5) ◽  
pp. 923-930
Author(s):  
Z. R. Vershinina ◽  
O. V. Chubukova ◽  
D. R. Maslennikova

Abstract The level of glutathione was investigated in the roots of tomato (Solanum lycopersicum L.) plants transgenic by genes psl and rapA1 in the presence of a microsymbiont of leguminous plants Rhizobium leguminosarum VSy3. The plants transformed with gene psl showed a greater bacterial adhesion than the plants transformed with gene rapA1, which positively correlated with growth parameters of plants. Treatment with rhizobia elevated the content of glutathione in the roots of wild type plants three times, 4.7 times in the roots of plants transformed with gene rapA1, and more than five times in the plants transgenic by gene psl. The obtained results suggest that the level of glutathione in the roots may serve as a marker of efficiency of artificial symbiotic systems produced de novo.


2020 ◽  
Vol 45 (3) ◽  
pp. 138-146
Author(s):  
Daisuke Ando ◽  
Takuo Fujisawa

Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 350 ◽  
Author(s):  
Parvin ◽  
Hasanuzzaman ◽  
Bhuyan ◽  
Nahar ◽  
Mohsin ◽  
...  

Salinity toxicity and the post-stress restorative process were examined to identify the salt tolerance mechanism in tomato, with a focus on the antioxidant defense and glyoxalase systems. Hydroponically grown 15 day-old tomato plants (Solanum lycopersicum L. cv. Pusa Ruby) were treated with 150 and 250 mM NaCl for 4 days and subsequently grown in nutrient solution for a further 2 days to observe the post-stress responses. Under saline conditions, plants showed osmotic stress responses that included low leaf relative water content and high proline content. Salinity induced oxidative stress by the over-accumulation of reactive oxygen species (H2O2 and O2•−) and methylglyoxal. Salinity also impaired the non-enzymatic and enzymatic components of the antioxidant defense system. On the other hand, excessive Na+ uptake induced ionic stress which resulted in a lower content of other minerals (K+, Ca2+, and Mg2+), and a reduction in photosynthetic pigment synthesis and plant growth. After 2 days in the normal nutrient solution, the plants showed improvements in antioxidant and glyoxalase system activities, followed by improvements in plant growth, water balance, and chlorophyll synthesis. The antioxidant and glyoxalase systems worked in concert to scavenge toxic reactive oxygen species (ROS), thereby reducing lipid peroxidation and membrane damage. Taken together, these findings indicate that tomato plants can tolerate salinity and show rapid post-stress recovery by enhancement of their antioxidant defense and glyoxalase systems.


Sign in / Sign up

Export Citation Format

Share Document