scholarly journals Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongjie Li ◽  
Mei Yang ◽  
Chengfeng Zhao ◽  
Yifan Wang ◽  
Renhe Zhang

Abstract Background Drought stress severely limits maize seedling growth and crop yield. Previous studies have elucidated the mechanisms by which maize acquires drought resistance and contends with water deficiency. However, the link between the physiological and molecular variations among maize cultivars are unknown. Here, physiological and proteomic analyses were conducted to compare the stress responses of two maize cultivars with contrasting drought stress tolerance. Results The physiological analysis showed that the drought-tolerant SD609 maize variety maintains relatively high photochemical efficiency by enhancing its protective cyclic electron flow (CEF) mechanism and antioxidative enzymes activities. Proteomics analysis revealed that 198 and 102 proteins were differentially expressed in SD609 and the drought-sensitive SD902 cultivar, respectively. GO and KEGG enrichments indicated that SD609 upregulated proteins associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. Upregulation of the proteins related to PSII repair and photoprotection improved photochemical capacity in SD609 subjected to moderate drought stress. In SD902, however, only the molecular chaperones and sucrose synthesis pathways were induced and they failed to protect the impaired photosystem. Further analysis demonstrated that proteins related to the electron transport chain (ETC) and redox homeostasis as well as heat shock proteins (HSPs) may be important in protecting plants from drought stress. Conclusions Our experiments explored the mechanism of drought tolerance and clarified the interconnections between the physiological and proteomic factors contributing to it. In summary, our findings aid in further understanding of the drought tolerance mechanisms in maize.

2021 ◽  
Author(s):  
Hongjie Li ◽  
Mei Yang ◽  
Chengfeng Zhao ◽  
Yifan Wang ◽  
Renhe Zhang

Abstract Background: Drought stress seriously limits the seedling growth and yield of maize. Despite previous studies on drought resistance mechanisms by which maize cope with water deficient, the link between physiological and molecular variations are largely unknown. To reveal the complex regulatory mechanisms, comparative physiology and proteomic analyses were conducted to investigate the stress responses of two maize cultivars with contrasting tolerance to drought stress. Results: Physiological results showed that SD609 (drought-tolerant) maintains higher photochemical efficiency by enhancing CEF (cyclic electron flow) protective mechanism and antioxidative enzymes activities. Proteomics analysis revealed a total of 198 and 102 proteins were differentially expressed in SD609 and SD902, respectively. Further enrichment analysis indicated that drought-tolerant ‘SD609’ increased the expression of proteins related to photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. The up-regulation proteins related to PSII repair and photoprotection mechanisms resulted in more efficient photochemical capacity in tolerant variety under moderate drought. However, the drought-sensitive ‘SD902’ only induced molecular chaperones and sucrose synthesis pathways, and failed to protect the impaired photosystem. Further analysis indicated that proteins related to the electron transport chain, redox homeostasis and heat shock proteins (HSPs) could be important in protecting plants from drought stress. Conclusions: Our experiments explored the mechanism of drought tolerance, and obtained detailed information about the interconnection of physiological research and protein research. In summary, our findings could provide new clues into further understanding of drought tolerance mechanisms in maize.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


2022 ◽  
Vol 23 (2) ◽  
pp. 686
Author(s):  
Sifan Sun ◽  
Xu Li ◽  
Shaopei Gao ◽  
Nan Nie ◽  
Huan Zhang ◽  
...  

WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 μM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.


2019 ◽  
Vol 20 (15) ◽  
pp. 3743 ◽  
Author(s):  
Xuan Wang ◽  
Tinashe Zenda ◽  
Songtao Liu ◽  
Guo Liu ◽  
Hongyu Jin ◽  
...  

Despite recent scientific headway in deciphering maize (Zea mays L.) drought stress responses, the overall picture of key proteins and genes, pathways, and protein–protein interactions regulating maize filling-kernel drought tolerance is still fragmented. Yet, maize filling-kernel drought stress remains devastating and its study is critical for tolerance breeding. Here, through a comprehensive comparative proteomics analysis of filling-kernel proteomes of two contrasting (drought-tolerant YE8112 and drought-sensitive MO17) inbred lines, we report diverse but key molecular actors mediating drought tolerance in maize. Using isobaric tags for relative quantification approach, a total of 5175 differentially abundant proteins (DAPs) were identified from four experimental comparisons. By way of Venn diagram analysis, four critical sets of drought-responsive proteins were mined out and further analyzed by bioinformatics techniques. The YE8112-exclusive DAPs chiefly participated in pathways related to “protein processing in the endoplasmic reticulum” and “tryptophan metabolism”, whereas MO17-exclusive DAPs were involved in “starch and sucrose metabolism” and “oxidative phosphorylation” pathways. Most notably, we report that YE8112 kernels were comparatively drought tolerant to MO17 kernels attributable to their redox post translational modifications and epigenetic regulation mechanisms, elevated expression of heat shock proteins, enriched energy metabolism and secondary metabolites biosynthesis, and up-regulated expression of seed storage proteins. Further, comparative physiological analysis and quantitative real time polymerase chain reaction results substantiated the proteomics findings. Our study presents an elaborate understanding of drought-responsive proteins and metabolic pathways mediating maize filling-kernel drought tolerance, and provides important candidate genes for subsequent functional validation.


2019 ◽  
Vol 48 (4) ◽  
pp. 1047-1063
Author(s):  
Huili Zhang ◽  
Chuang Yuan ◽  
Guillian Mao ◽  
Xue Gao ◽  
Liu Zhu ◽  
...  

Saline-alkali and drought stresses are one of the abiotic stress factors that limit the normal growth and development of plants. In this work, various agronomic indexes including growth physiology and yield attributes were studied under saline-alkali and drought stress treatments. It was found that the limit of plant growth and development caused by drought stress is much higher than that of saline-alkali stress (p < 0.01). Based on the comprehensive evaluation value (D value), under saline-alkali stress condition, 36 maize varieties could be divided into four groups by cluster analysis (CA): High saline-alkali tolerance (3 varieties), medium saline-alkali tolerant(10 varieties), saline-alkali sensitive (19 varieties), high saline-alkali sensitive (4 varieties). In drought stress condition, 36 maize varieties could be divided into five groups by cluster analysis (CA): High drought-tolerance (2 varieties), medium drought-tolerant (14 varieties), low drought-tolerant (15 varieties), drought-sensitive (4 varieties), high drought-sensitive (1 variety). Therefore, this study provides a comprehensive screening of maize varieties under saline-alkali and drought stresses.


2010 ◽  
Vol 90 (6) ◽  
pp. 831-852 ◽  
Author(s):  
B. Badu-Apraku ◽  
A. Menkir ◽  
S. Ajala ◽  
R. Akinwale ◽  
M. Oyekunle ◽  
...  

Maize (Zea mays L.) production in west Africa (WA) is constrained by drought, Striga hermonthica infestation and low soil nitrogen (N). Maize varieties resistant to Striga, drought, and low N are ideal for WA, but genotype × environment interaction on these traits are usually significant due to differential responses of cultivars to growing conditions. Three studies were conducted from 2007 to 2009 at five locations in Nigeria to evaluate the performance of selected early-maturing cultivars under drought stress versus well-watered, Striga-infested versus Striga-free, and in low- versus high-N environments. Drought stress reduced grain yield by 44%, Striga infestation by 65%, and low N by 40%. GGE biplot analysis showed that the genotypes TZE-W DT STR C4, Tillering Early DT, TZE-W DT STR QPM C0 and TZE-Y DT STR C4 performed relatively well in all study environments. TZE-W DT STR C4 and TZE Comp3 C1F2 were outstanding under drought, TZE-W DT STR C4, EVDT-W 99 STR QPM C0 and TZE-W DT STR QPMC0 under Striga infestation and Tillering Early DT, EVDT 97 STRC1, TZE-W DT STR C4, and TZE Comp3 C3 under N deficiency. Maize productivity in WA can be significantly improved by promoting cultivation of genotypes that combine high resistance/tolerance to Striga and drought with improved N-use efficiency.


2018 ◽  
Author(s):  
Weiping Shi ◽  
Jingye Cheng ◽  
Xiaojie Wen ◽  
Jixiang Wang ◽  
Guanyan Shi ◽  
...  

Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ~20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4752 ◽  
Author(s):  
Weiping Shi ◽  
Jingye Cheng ◽  
Xiaojie Wen ◽  
Jixiang Wang ◽  
Guanyan Shi ◽  
...  

Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.


2020 ◽  
Author(s):  
Xiangchi Zhang ◽  
Weidan Lu ◽  
Xiaoli Wang ◽  
Bin Ma ◽  
Kaiyong Fu ◽  
...  

Abstract Phosphorus stress and drought stress are common abiotic stresses. In this study, two winter wheat “Xindong20” and “Xindong23” were solution cultured and then treated with drought stress under conventional phosphorus level (CP: 1.0 mmol/L) and low phosphorus level (LP: 0.05 mmol /L), respectively. The results showed that with the increase of drought stress, the LP application was more conducive to the growth of root tips, length, forks, surfarea and root vitality of wheat. Under the LP treatment, the total phosphorus content of root at rewatered 3d was increased by 94.2% in Xindong20 wheat and decreased by 48.9% in Xindong23 wheat, compared with their respective samples at drought 0d. The LP treatment increased the percentage content of K and decreased the P and Ca percentage content. However, under CP treatment, the percentage content of Zn after rewatered 3 days were increased, compared with drought 7d. Based on the GeneChip analysis of root samples from drought 7d, the microarray results showed that 4577 and 202 differentially expressed genes were detected from Xindong20 and Xindong23, respectively. Among them, 89.9% of differentially expressed genes were involved in organelles and vesicles in Xindong20, and 69.8% were involved in genes encoding root anatomical structure, respiratory chain, electron transport chain, ion transport and enzyme activity in Xindong23. Therefore, the supply of low phosphorus has more effects on the drought tolerance of wheat, and the wheat with different drought tolerance has different regulatory genes. The higher drought-tolerant wheat has more genes up-regulation in response to drought stress.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1036E-1037
Author(s):  
Mohamed Tawfik ◽  
Alejandra Ferenczi ◽  
Daniel Enter ◽  
Rebecca Grumet

Abiotic stresses (e.g., salinity, drought, cold, oxidative stress) can be major factors limiting plant productivity worldwide. We sought to increase abiotic stress resistance in cucumber by expressing the A. thaliana transcription factors CBF1and CBF3, which regulate genes responsible for enhanced dehydration-stress resistance in Arabidopsis. Our previous studies in the greenhouse and field demonstrated increased salinity tolerance in CBF-expressing cucumber lines. In the current studies, we tested response of CBF-cucumber plants to drought, chilling, and oxidative stresses. Transgenic cucumber plants subjected to drought stress in the greenhouse showed elevated levels of the stress-inducible compatible solute, proline, compared to the nontransgenic controls. Preliminary results also indicate greater photochemical efficiency in CBF-expressing plants under drought stress conditions compared to the nontransgenic controls. Under nonstressed conditions, there were no significant differences in growth between the transgenic and the nontransgenic cucumber plants; however, after a cycle of drought stress, CBF-cucumber lines had less growth reduction compared to the nontransgenic counterparts. The advantage in growth was less pronounced after a second cycle of drought. We also evaluated the transgenic cucumber plants under chilling conditions (i.e., low, nonfreezing temperatures within the 0 to 12 °C range). Based on plant height and cotyledon and leaf damage measurements, transgenic cucumber seedlings did not show chilling tolerance compared to the wild-type control. The response of transgenic CBF-cucumber plants to oxidative stress using methyl viologen is also being evaluated.


Sign in / Sign up

Export Citation Format

Share Document