scholarly journals Physiological and Proteomic Analysis Revealed the Response Mechanisms of two Different Grought-resistant Maize Varieties

Author(s):  
Hongjie Li ◽  
Mei Yang ◽  
Chengfeng Zhao ◽  
Yifan Wang ◽  
Renhe Zhang

Abstract Background: Drought stress seriously limits the seedling growth and yield of maize. Despite previous studies on drought resistance mechanisms by which maize cope with water deficient, the link between physiological and molecular variations are largely unknown. To reveal the complex regulatory mechanisms, comparative physiology and proteomic analyses were conducted to investigate the stress responses of two maize cultivars with contrasting tolerance to drought stress. Results: Physiological results showed that SD609 (drought-tolerant) maintains higher photochemical efficiency by enhancing CEF (cyclic electron flow) protective mechanism and antioxidative enzymes activities. Proteomics analysis revealed a total of 198 and 102 proteins were differentially expressed in SD609 and SD902, respectively. Further enrichment analysis indicated that drought-tolerant ‘SD609’ increased the expression of proteins related to photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. The up-regulation proteins related to PSII repair and photoprotection mechanisms resulted in more efficient photochemical capacity in tolerant variety under moderate drought. However, the drought-sensitive ‘SD902’ only induced molecular chaperones and sucrose synthesis pathways, and failed to protect the impaired photosystem. Further analysis indicated that proteins related to the electron transport chain, redox homeostasis and heat shock proteins (HSPs) could be important in protecting plants from drought stress. Conclusions: Our experiments explored the mechanism of drought tolerance, and obtained detailed information about the interconnection of physiological research and protein research. In summary, our findings could provide new clues into further understanding of drought tolerance mechanisms in maize.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongjie Li ◽  
Mei Yang ◽  
Chengfeng Zhao ◽  
Yifan Wang ◽  
Renhe Zhang

Abstract Background Drought stress severely limits maize seedling growth and crop yield. Previous studies have elucidated the mechanisms by which maize acquires drought resistance and contends with water deficiency. However, the link between the physiological and molecular variations among maize cultivars are unknown. Here, physiological and proteomic analyses were conducted to compare the stress responses of two maize cultivars with contrasting drought stress tolerance. Results The physiological analysis showed that the drought-tolerant SD609 maize variety maintains relatively high photochemical efficiency by enhancing its protective cyclic electron flow (CEF) mechanism and antioxidative enzymes activities. Proteomics analysis revealed that 198 and 102 proteins were differentially expressed in SD609 and the drought-sensitive SD902 cultivar, respectively. GO and KEGG enrichments indicated that SD609 upregulated proteins associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. Upregulation of the proteins related to PSII repair and photoprotection improved photochemical capacity in SD609 subjected to moderate drought stress. In SD902, however, only the molecular chaperones and sucrose synthesis pathways were induced and they failed to protect the impaired photosystem. Further analysis demonstrated that proteins related to the electron transport chain (ETC) and redox homeostasis as well as heat shock proteins (HSPs) may be important in protecting plants from drought stress. Conclusions Our experiments explored the mechanism of drought tolerance and clarified the interconnections between the physiological and proteomic factors contributing to it. In summary, our findings aid in further understanding of the drought tolerance mechanisms in maize.


2019 ◽  
Vol 20 (15) ◽  
pp. 3743 ◽  
Author(s):  
Xuan Wang ◽  
Tinashe Zenda ◽  
Songtao Liu ◽  
Guo Liu ◽  
Hongyu Jin ◽  
...  

Despite recent scientific headway in deciphering maize (Zea mays L.) drought stress responses, the overall picture of key proteins and genes, pathways, and protein–protein interactions regulating maize filling-kernel drought tolerance is still fragmented. Yet, maize filling-kernel drought stress remains devastating and its study is critical for tolerance breeding. Here, through a comprehensive comparative proteomics analysis of filling-kernel proteomes of two contrasting (drought-tolerant YE8112 and drought-sensitive MO17) inbred lines, we report diverse but key molecular actors mediating drought tolerance in maize. Using isobaric tags for relative quantification approach, a total of 5175 differentially abundant proteins (DAPs) were identified from four experimental comparisons. By way of Venn diagram analysis, four critical sets of drought-responsive proteins were mined out and further analyzed by bioinformatics techniques. The YE8112-exclusive DAPs chiefly participated in pathways related to “protein processing in the endoplasmic reticulum” and “tryptophan metabolism”, whereas MO17-exclusive DAPs were involved in “starch and sucrose metabolism” and “oxidative phosphorylation” pathways. Most notably, we report that YE8112 kernels were comparatively drought tolerant to MO17 kernels attributable to their redox post translational modifications and epigenetic regulation mechanisms, elevated expression of heat shock proteins, enriched energy metabolism and secondary metabolites biosynthesis, and up-regulated expression of seed storage proteins. Further, comparative physiological analysis and quantitative real time polymerase chain reaction results substantiated the proteomics findings. Our study presents an elaborate understanding of drought-responsive proteins and metabolic pathways mediating maize filling-kernel drought tolerance, and provides important candidate genes for subsequent functional validation.


2019 ◽  
Vol 48 (4) ◽  
pp. 1047-1063
Author(s):  
Huili Zhang ◽  
Chuang Yuan ◽  
Guillian Mao ◽  
Xue Gao ◽  
Liu Zhu ◽  
...  

Saline-alkali and drought stresses are one of the abiotic stress factors that limit the normal growth and development of plants. In this work, various agronomic indexes including growth physiology and yield attributes were studied under saline-alkali and drought stress treatments. It was found that the limit of plant growth and development caused by drought stress is much higher than that of saline-alkali stress (p < 0.01). Based on the comprehensive evaluation value (D value), under saline-alkali stress condition, 36 maize varieties could be divided into four groups by cluster analysis (CA): High saline-alkali tolerance (3 varieties), medium saline-alkali tolerant(10 varieties), saline-alkali sensitive (19 varieties), high saline-alkali sensitive (4 varieties). In drought stress condition, 36 maize varieties could be divided into five groups by cluster analysis (CA): High drought-tolerance (2 varieties), medium drought-tolerant (14 varieties), low drought-tolerant (15 varieties), drought-sensitive (4 varieties), high drought-sensitive (1 variety). Therefore, this study provides a comprehensive screening of maize varieties under saline-alkali and drought stresses.


2018 ◽  
Vol 143 (3) ◽  
pp. 207-212
Author(s):  
Jianming Sun ◽  
Yiming Liu ◽  
Xianglin Li ◽  
Bingru Huang

Protein metabolism plays an important role in plant adaptation to drought stress. The objective of this study was to identify drought-responsive proteins associated with differential drought tolerance for a tolerant genotype (RU9) and a sensitive genotype (RU18) of tall fescue (Lolium arundinacea). Plants of both genotypes were grown under well-watered conditions or subjected to drought stress by withholding irrigation for 12 days in a growth chamber controlled at the optimal growth temperatures of 23/18 °C (day/night). Physiological analysis demonstrated that RU9 was relatively more drought tolerant than RU18, as shown by the higher leaf net photosynthetic rate (Pn) and photochemical efficiency at 12 days of drought treatment. Differentially expressed proteins between RU9 and RU18 exposed to drought stress were identified by two-dimensional electrophoresis and mass spectrometry (MS). Several proteins [photosystem I reaction center subunit II, Rubisco small subunit, and Glyceraldehyde-3-phosphate dehydrogenase (GADPH)] in photosynthesis, respiration, or oxidative regulation exhibited higher abundance in RU9 than RU18 under drought stress. These results suggested the critical importance of energy and oxidative metabolism in tall fescue adaptation to drought stress. Those abundant proteins in the drought-tolerant genotype could be used as biomarkers or developed to molecular markers to develop elite drought-tolerant germplasm in tall fescue and other cool-season perennial grass species.


2019 ◽  
Vol 20 (11) ◽  
pp. 2793 ◽  
Author(s):  
Wenjing Zeng ◽  
Yunling Peng ◽  
Xiaoqiang Zhao ◽  
Boyang Wu ◽  
Fenqi Chen ◽  
...  

The growth and development of maize roots are closely related to drought tolerance. In order to clarify the molecular mechanisms of drought tolerance between different maize (Zea mays L.) varieties at the protein level, the isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics were used for the comparative analysis of protein expression in the seedling roots of the drought-tolerant Chang 7-2 and drought-sensitive TS141 maize varieties under 20% polyethylene glycol 6000 (PEG 6000)-simulated drought stress. We identified a total of 7723 differentially expressed proteins (DEPs), 1243 were significantly differentially expressed in Chang 7-2 following drought stress, 572 of which were up-regulated and 671 were down-regulated; 419 DEPs were identified in TS141, 172 of which were up-regulated and 247 were down-regulated. In Chang 7-2, the DEPs were associated with ribosome pathway, glycolysis/gluconeogenesis pathway, and amino sugar and nucleotide sugar metabolism. In TS141, the DEPs were associated with metabolic pathway, phenylpropanoid biosynthesis pathway, and starch and sucrose metabolism. Compared with TS141, the higher drought tolerance of Chang 7-2 root system was attributed to a stronger water retention capacity; the synergistic effect of antioxidant enzymes; the strengthen cell wall; the osmotic stabilization of plasma membrane proteins; the effectiveness of recycling amino acid; and an improvement in the degree of lignification. The common mechanisms of the drought stress response between the two varieties included: The promotion of enzymes in the glycolysis/gluconeogenesis pathway; cross-protection against the toxicity of aldehydes and ammonia; maintenance of the cell membrane stability. Based on the proteome sequencing information, the coding region sequences of eight DEP-related genes were analyzed at the mRNA level by quantitative real-time PCR (qRT-PCR). The findings of this study can inform the future breeding of drought-tolerant maize varieties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sang-Uk Lee ◽  
Bong-Gyu Mun ◽  
Eun-Kyung Bae ◽  
Jae-Young Kim ◽  
Hyun-Ho Kim ◽  
...  

Populus trichocarpa has been studied as a model poplar species through biomolecular approaches and was the first tree species to be genome sequenced. In this study, we employed a high throughput RNA-sequencing (RNA-seq) mediated leaf transcriptome analysis to investigate the response of four different Populus davidiana cultivars to drought stress. Following the RNA-seq, we compared the transcriptome profiles and identified two differentially expressed genes (DEGs) with contrasting expression patterns in the drought-sensitive and tolerant groups, i.e., upregulated in the drought-tolerant P. davidiana groups but downregulated in the sensitive group. Both these genes encode a 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme required for abscisic acid (ABA) biosynthesis. The high-performance liquid chromatography (HPLC) measurements showed a significantly higher ABA accumulation in the cultivars of the drought-tolerant group following dehydration. The Arabidopsis nced3 loss-of-function mutants showed a significantly higher sensitivity to drought stress, ~90% of these plants died after 9 days of drought stress treatment. The real-time PCR analysis of several key genes indicated a strict regulation of drought stress at the transcriptional level in the P. davidiana drought-tolerant cultivars. The transgenic P. davidiana NCED3 overexpressing (OE) plants were significantly more tolerant to drought stress as compared with the NCED knock-down RNA interference (RNAi) lines. Further, the NCED OE plants accumulated a significantly higher quantity of ABA and exhibited strict regulation of drought stress at the transcriptional level. Furthermore, we identified several key differences in the amino acid sequence, predicted structure, and co-factor/ligand binding activity of NCED3 between drought-tolerant and susceptible P. davidiana cultivars. Here, we presented the first evidence of the significant role of NCED genes in regulating ABA-dependent drought stress responses in the forest tree P. davidiana and uncovered the molecular basis of NCED3 evolution associated with increased drought tolerance.


2021 ◽  
Author(s):  
Veerendra Jaldhani ◽  
Ponnuvel Senguttuvel ◽  
Bathula Srikanth ◽  
Puskur Raghuveer Rao ◽  
Desiraju Subrahmanyam ◽  
...  

Rice is an important staple food crop across the world. It is mainly cultivated under irrigated lowland and also rain-fed upland conditions where drought stress is often noticed. Global climate change predicts an intensification of drought stress in future due to uneven rainfall which was witnessed for the last few years. Confronting drought stress can deliver fruitful crop returns in rice and scope for research extents. Drought stress affects the overall plant growth and yield. A prominent improvement has been made during last two decades in our understanding of the mechanisms involved in adaptation and tolerance to drought stress in rice. In order to achieve the marked crop returns from rainfed areas, there is a requisite of drought tolerant rice varieties, and genetic improvement for drought tolerance should be a prime area of concern in the future. A huge rice germplasm is available and good number of the germplasm possess drought tolerance and these genomic regions have been exploited in developing some drought tolerant rice varieties. The application of available genotyping methodologies, the identification of traits of interest, and key genetic regions associated with the drought tolerance have opened new prospects to successfully develop new drought tolerant varieties. This chapter deals with the importance of drought tolerance in rice crop followed by the evolution of molecular markers and breeding techniques in identifying drought tolerant QTL’s/genes and their utilization in the improvement of drought tolerant rice varieties.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Gaurav Dhawan ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
...  

Reproductive stage drought stress (RSDS) is detrimental for rice, which affects its productivity as well as grain quality. In the present study, we introgressed two major quantitative trait loci (QTLs), namely, qDTY2.1 and qDTY3.1, governing RSDS tolerance in a popular high yielding non-aromatic rice cultivar, Pusa 44, through marker-assisted backcross breeding (MABB). Pusa 44 is highly sensitive to RSDS, which restricts its cultivation across drought-prone environments. Foreground selection was carried out using markers, RM520 for qDTY3.1 and RM 521 for qDTY2.1. Background selection was achieved with 97 polymorphic SSR markers in tandem with phenotypic selection to achieve faster recurrent parent genome (RPG) recovery. Three successive backcrosses followed by three selfings aided RPG recoveries of 98.6% to 99.4% among 31 near isogenic lines (NILs). Fourteen NILs were found to be significantly superior in yield and grain quality under RSDS with higher drought tolerance efficiency (DTE) than Pusa 44. Among these, the evaluation of two promising NILs in the multilocational trial during Kharif 2019 showed that they were significantly superior to Pusa 44 under reproductive stage drought stress, while performing on par with Pusa 44 under normal irrigated conditions. These di-QTL pyramided drought-tolerant NILs are in the final stages of testing the All India Coordinated Rice Improvement Project varietal trials for cultivar release. Alternately, the elite drought-tolerant Pusa 44 NILs will serve as an invaluable source of drought tolerance in rice improvement.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


Sign in / Sign up

Export Citation Format

Share Document