scholarly journals Pneumonia due to Pandoraea Apista after evacuation of traumatic intracranial hematomas:a case report and literature review

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chuanzhong Lin ◽  
Ning Luo ◽  
Qiang Xu ◽  
Jianjun Zhang ◽  
Mengting Cai ◽  
...  

Abstract Background Pandoraea species is a newly described genus, which is multidrug resistant and difficult to identify. Clinical isolates are mostly cultured from cystic fibrosis (CF) patients. CF is a rare disease in China, which makes Pandoraea a total stranger to Chinese physicians. Pandoraea genus is reported as an emerging pathogen in CF patients in most cases. However, there are few pieces of evidence that confirm Pandoraea can be more virulent in non-CF patients. The pathogenicity of Pandoraea genus is poorly understood, as well as its treatment. The incidence of Pandoraea induced infection in non-CF patients may be underestimated and it’s important to identify and understand these organisms. Case presentation We report a 44-years-old man who suffered from pneumonia and died eventually. Before his condition deteriorated, a Gram-negative bacilli was cultured from his sputum and identified as Pandoraea Apista by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Conclusion Pandoraea spp. is an emerging opportunistic pathogen. The incidences of Pandoraea related infection in non-CF patients may be underestimated due to the difficulty of identification. All strains of Pandoraea show multi-drug resistance and highly variable susceptibility. To better treatment, species-level identification and antibiotic susceptibility test are necessary.

2016 ◽  
Vol 10 (1) ◽  
pp. 202-208 ◽  
Author(s):  
Marisa Almuzara ◽  
Claudia Barberis ◽  
Viviana Rojas Velázquez ◽  
Maria Soledad Ramirez ◽  
Angela Famiglietti ◽  
...  

Objective:To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates.Methods:All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and <1.700 no reliable identification) and lower cut-off scores (≥1.500 for genus level, ≥ 1.700 for species-level and score <1.500 no reliable identification) were considered for identification. A minimum difference of 10% between the top and next closest score was required for a different genus or species.MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result.When both methods gave discordant results, the 16S rDNA orsodAgenes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S orsodA identification were considered incorrect.Results:Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained.Conclusion:The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis asHelcococcus,Abiotrophia,Granulicatella, among others. Nevertheless, expansion of the library, especially including more strains with different spectra on the same species might overcome potential “intraspecies” variability problems. Moreover, a decrease of the identification scores for species and genus-level identification must be considered since it may improve the MALDI-TOF MS accuracy.


2017 ◽  
Vol 29 (5) ◽  
pp. 622-627 ◽  
Author(s):  
Rinosh J. Mani ◽  
Anil J. Thachil ◽  
Akhilesh Ramachandran

Accurate and timely identification of infectious etiologies is of great significance in veterinary microbiology, especially for critical diseases such as strangles, a highly contagious disease of horses caused by Streptococcus equi subsp. equi. We evaluated a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform for use in species- and subspecies-level identification of S. equi isolates from horses and compared it with an automated biochemical system. We used 25 clinical isolates each of S. equi subsp. equi and S. equi subsp. zooepidemicus. Using the MALDI-TOF MS platform, it was possible to correctly identify all 50 isolates to the species level. Unique mass peaks were identified in the bacterial peptide mass spectra generated by MALDI-TOF MS, which can be used for accurate subspecies-level identification of S. equi. Mass peaks (mass/charge, m/ z) 6,751.9 ± 1.4 (mean ± standard deviation) and 5,958.1 ± 1.3 were found to be unique to S. equi subsp. equi and S. equi subsp. zooepidemicus, respectively. The automated biochemical system correctly identified 47 of 50 of the isolates to the species level as S. equi, whereas at the subspecies level, 24 of 25 S. equi subsp. equi isolates and 22 of 25 S. equi subsp. zooepidemicus isolates were correctly identified. Our results indicate that MALDI-TOF MS can be used for accurate species- and subspecies-level identification of S. equi.


2015 ◽  
Vol 53 (6) ◽  
pp. 1990-1992 ◽  
Author(s):  
Carlotta Montagnani ◽  
Patrizia Pecile ◽  
Maria Moriondo ◽  
Patrizia Petricci ◽  
Sabrina Becciani ◽  
...  

We report the first human case of meningitis and sepsis caused in a child byActinobacillus suisorA. equuli, a common opportunistic pathogen of swine or horses, respectively. Identification was performed by matrix-assisted laser desorption ionization–time of flight mass spectrometry and real-time PCR assay. A previous visit to a farm was suspected as the source of infection.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Silvio Kau ◽  
Michael D. Mansfeld ◽  
Alexandra Šoba ◽  
Timo Zwick ◽  
Carsten Staszyk

Abstract Background Prevotella histicola is a facultative oral pathogen that under certain conditions causes pathologies such as caries and periodontitis in humans. Prevotella spp. also colonize the oral cavity of horses and can cause disease, but P. histicola has not yet been identified. Case presentation A 12-year-old Tinker mare was referred to the clinic for persistent, malodorous purulent nasal discharge and quidding. Conservative antibiotic (penicillin), antiphlogistic (meloxicam), and mucolytic (dembrexine-hydrochloride) treatment prior to referral was unsuccessful and symptoms worsened. Oral examination, radiography, sino-/ rhinoscopy, and standing computed tomography revealed severe apical/ periapical infection of the upper cheek tooth 209 with accompanying unilateral sinonasal inflammation and conchal necrosis. The tooth exhibited extensive subocclusal mesial infundibular cemental hypoplasia and caries, and an occlusal fissure fracture. After mechanical debridement and thermoplastic resin filling of the spacious subocclusal carious infundibular lesion, the tooth was extracted intraorally. The sinusitis and conchal necrosis were treated transendoscopically. Selective bacteriological swab cultures of affected tooth roots and subsequent matrix-assisted laser desorption ionization-time of flight mass spectrometry showed an infection with the obligate anaerobic, Gram-negative bacterium P. histicola. Surgical intervention and adapted antibiotic therapy led to normal healing without complications. Conclusions This study provides the first documented case of dental infection in a horse caused by P. histicola at once indicating necessity of more sufficient microbiological diagnostics and targeted antibiotic treatment in equine dental practice. This finding is also conducive to understand species-specific Prevotella diversity and cross-species distribution.


2021 ◽  
Vol 15 (07) ◽  
pp. 934-342
Author(s):  
Charbel Al-Bayssari ◽  
Tania Nawfal Dagher ◽  
Samar El Hamoui ◽  
Fadi Fenianos ◽  
Nehman Makdissy ◽  
...  

Introduction: The increasing incidence of infections caused by multidrug-resistant bacteria is considered a global health problem. This study aimed to investigate this resistance in Gram-negative bacteria isolated from patients hospitalized in North-Lebanon. Methodology: All isolates were identified using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility testing was achieved using disk diffusion, E-test and Broth microdilution methods. Phenotypic detection of carbapenemase was carried out using the CarbaNP test. RT-PCR, standard-PCR and sequencing were performed to detect resistance genes and oprD gene. Conjugal transfer was carried out between our isolates and Escherichia coli J53 to detect the genetic localization of resistance genes. MLST was conducted to determine the genotype of each isolate. Results: Twenty-three carbapenem-resistant Enterobacterales of which eight colistin-resistant Escherichia coli, and Twenty carbapenem-resistant Pseudomonas aeruginosa were isolated. All isolates showed an imipenem MIC greater than 32 mg/mL with MICs for colistin greater than 2 mg/L for E. coli isolates. All the Enterobacterales isolates had at least one carbapenemase-encoding gene, with E. coli isolates coharboring blaNDM-4 and mcr-1 genes. Moreover, 16/20 Pseudomonas aeruginosa harbored the blaVIM-2 gene and 18/20 had mutations in the oprD gene. MLST revealed that the isolates belonged to several clones. Conclusions: We report here the first description in the world of clinical E. coli isolates coharboring blaNDM-4 and mcr-1 genes, and K. pneumoniae isolates producing NDM-6 and OXA-48 carbapenemases. Also, we describe the emergence of NDM-1-producing E. cloacae in Lebanon. Screening for these isolates is necessary to limit the spread of resistant microorganisms in hospitals.


2015 ◽  
Vol 30 (1) ◽  
Author(s):  
Anna Di Taranto ◽  
Rosella De Nittis ◽  
Marco Fagioni ◽  
Tiziana Rollo ◽  
Paola Cella ◽  
...  

<em>Background</em>. Resistance to carbapenems in <em>Klebsiella</em> <em>pneumoniae</em> infections could compromise therapy efficiency in hospitals. In Italy, the percentage of <em>K</em>. <em>pmeumoniae</em> resistant to carbapenems blood-isolated is 35%. <br /><em>Materials</em> <em>and</em> <em>Methods</em>. Seventy-three multidrug-resistant <em>K</em>. <em>pneumoniae</em> clinical isolates coming from Foggia (Italy) have been phenotypically classified through matrix assisted laser desorption/ionization-time of flight mass spectrometry between February and May 2014 in order to locate an eventual infectious outbreak. <br /><em>Conclusions</em>. Classification of microbial isolates is essential to this purpose and starts from phenotypic methodologies to the most complex genotypic methods. Among these, mass spectrometry utilization appears to be a simple, useful and quick instrument in a clinical microbiology laboratory.


2015 ◽  
Vol 53 (6) ◽  
pp. 1823-1830 ◽  
Author(s):  
Shallu Kathuria ◽  
Pradeep K. Singh ◽  
Cheshta Sharma ◽  
Anupam Prakash ◽  
Aradhana Masih ◽  
...  

Candida aurisis a multidrug-resistant yeast that causes a wide spectrum of infections, especially in intensive care settings. We investigatedC. aurisprevalence among 102 clinical isolates previously identified asCandida haemuloniiorCandida famataby the Vitek 2 system. Internal transcribed spacer region (ITS) sequencing confirmed 88.2% of the isolates asC. auris, and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) easily separated all related species,viz.,C. auris(n= 90),C. haemulonii(n= 6),C. haemuloniivar.vulnera(n= 1), andCandida duobushaemulonii(n= 5). Thein vitroantifungal susceptibility was determined using CLSI broth microdilution (CLSI-BMD), the Vitek 2 antifungal susceptibility test, and the Etest method.C. aurisisolates revealed uniformly elevated fluconazole MICs (MIC50, 64 μg/ml), and an alarming percentage of isolates (37%) exhibited elevated caspofungin MICs by CLSI-BMD. Notably, 34% ofC. aurisisolates had coexisting elevated MICs (≥2 μg/ml) for both fluconazole and voriconazole, and 10% of the isolates had elevated coexisting MICs (≥2 μg/ml) to two additional azoles, i.e., posaconazole and isavuconazole. In contrast to reduced amphotericin B MICs by CLSI-BMD (MIC50, 1 μg/ml) forC. auris, elevated MICs were noted by Vitek 2 (MIC50, 8 μg/ml), which were statistically significant.Candida aurisremains an unnoticed pathogen in routine microbiology laboratories, as 90% of the isolates characterized by commercial identification systems are misidentified asC. haemulonii. MALDI-TOF MS proved to be a more robust diagnostic technique for rapid identification ofC. auris. Considering that misleading elevated MICs of amphotericin B by the Vitek AST-YS07 card may lead to the selection of inappropriate therapy, a cautionary approach is recommended for laboratories relying on commercial systems for identification and antifungal susceptibility testing of rare yeasts.


Sign in / Sign up

Export Citation Format

Share Document