scholarly journals Anticancer effects of dihydromyricetin on the proliferation, migration, apoptosis and in vivo tumorigenicity of human hepatocellular carcinoma Hep3B cells

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lianggui Jiang ◽  
Wen-Chu Ye ◽  
Zuobiao Li ◽  
Yongguang Yang ◽  
Wei Dai ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) represents a serious public health problem worldwide and has high morbidity and mortality. Dihydromyricetin (DHM) exhibits anticancer effect on a variety of malignancies, but its anticancer function of DHM in HCC has been unclear. The aim of this study was designed to investigate the anticancer effect of DHM on cell apoptosis, proliferation, migration and invasion of hepatoma carcinoma cells. Methods Cultured Hep3B cells were treated with different DHM concentrations, followed by cell apoptosis, proliferation, migration and invasion were examined by CCK-8, colony formation assay, wound healing, Transwell and flow cytometry, respectively. The mRNA and protein expression of BCL-2, Cleaved-caspase 3, Cleaved-caspase 9, BAK, BAX and BAD were validated by western blot. Results DHM markedly suppressed proliferation, migration, invasion and facilitated apoptosis in Hep3B cells. Mechanistically, DHM significantly downregulated the Bcl-2 expression, and upregulated the mRNA and protein levels of Cleaved-Caspase 3, Cleaved- Caspase 9, Bak, Bax and Bad. Furthermore, in the nude mice tumorigenic model, DHM treatment greatly decreased the weight of the HCC cancers compared to the weights in control and NDP group. Conclusions DHM could suppress cell proliferation, migration, invasion, and facilitated apoptosis in Hep3B cells. These findings could provide novel insights to develop potential therapeutic strategy for the clinical treatment of HCC.

2021 ◽  
Author(s):  
Lianggui Jiang ◽  
Wen-Chu Ye ◽  
Zuobiao Li ◽  
Yongguang Yang ◽  
Wei Dai ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) represents a serious public health problem worldwide and has high morbidity and mortality. Dihydromyricetin (DHM) exhibits anti-tumor effect on a variety of malignancies, but its antitumor function of DHM in HCC has been unclear. The aim of this study was designed to investigate the antitumor effect of DHM on cell apoptosis, proliferation, migration and invasion of hepatoma carcinoma cells. Methods: Cultured Hep3B cells were treated with different DHM concentrations, follow by cell apoptosis, proliferation, migration and invasion were examined by CCK-8, colony formation assay, wound healing, Transwell and flow cytometry, respectively. The mRNA and protein expression of apoptosis-associated genes and Bcl-2/Caspase-9 signaling pathway were validated by RT-PCR and western blot. Results: DHM markedly suppressed proliferation, migration, invasion and facilitated apoptosis in Hep3B cells. Mechanistically, DHM significantly downregulated the Bcl-2 expression, and upregulated the mRNA and protein levels of Cleaved-Caspase 3, Cleaved- Caspase 9, Bak, Bax and Bad. Furthermore, in the nude mice tumorigenic model, DHM treatment greatly decreased the weight of the HCC tumors compared to the weights in control and NDP group. Conclusions: DHM could suppress cell proliferation, migration, invasion, and facilitated apoptosis in Hep3B cells. These findings could provide novel insights to develop potential therapeutic strategy for the clinical treatment of HCC.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 393 ◽  
Author(s):  
Lulu Xie ◽  
Minjing Li ◽  
Desheng Liu ◽  
Xia Wang ◽  
Peiyuan Wang ◽  
...  

Liver cancer is a very common and significant health problem. Therefore, powerful molecular targeting agents are urgently needed. Previously, we demonstrated that secalonic acid-F (SAF) suppresses the growth of hepatocellular carcinoma (HCC) cells (HepG2), but the other anticancer biological functions and the underlying mechanism of SAF on HCC are unknown. In this study, we found that SAF, which was isolated from a fungal strain in our lab identified as Aspergillus aculeatus, could inhibit the progression of hepatocellular carcinoma by targeting MARCH1, which regulates the PI3K/AKT/β-catenin and antiapoptotic Mcl-1/Bcl-2 signaling cascades. First, we confirmed that SAF reduced the proliferation and colony formation of HCC cell lines (HepG2 and Hep3B), promoted cell apoptosis, and inhibited the cell cycle in HepG2 and Hep3B cells in a dose-dependent manner. In addition, the migration and invasion of HepG2 and Hep3B cells treated with SAF were significantly suppressed. Western blot analysis showed that the level of MARCH1 was downregulated by pretreatment with SAF through the regulation of the PI3K/AKT/β-catenin signaling pathways. Moreover, knockdown of MARCH1 by small interfering RNAs (siRNAs) targeting MARCH1 also suppressed the proliferation, colony formation, migration, and invasion as well as increased the apoptotic rate of HepG2 and Hep3B cells. These data confirmed that the downregulation of MARCH1 could inhibit the progression of hepatocellular carcinoma and that the mechanism may be via PI3K/AKT/β-catenin inactivation as well as the downregulation of the antiapoptotic Mcl-1/Bcl-2. In vivo, the downregulation of MARCH1 by treatment with SAF markedly inhibited tumor growth, suggesting that SAF partly blocks MARCH1 and further regulates the PI3K/AKT/β-catenin and antiapoptosis Mcl-1/Bcl-2 signaling cascade in the HCC nude mouse model. Additionally, the apparent diffusion coefficient (ADC) values, derived from magnetic resonance imaging (MRI), were increased in tumors after SAF treatment in a mouse model. Taken together, our findings suggest that MARCH1 is a potential molecular target for HCC treatment and that SAF is a promising agent targeting MARCH1 to treat liver cancer patients.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Baolong Wang ◽  
Xianrong Liu ◽  
Xiangtao Meng

Abstract Objective: To explore the biological function and mechanism of miR-96-5p in gastric cancer. Methods: The expression of differently expressed microRNAs (DEMs) related to gastric adenocarcinoma (GAC) prognosis was identified in GAC tumor samples and adjacent normal samples by qRT-PCR. A target gene miR-96-5p was selected using TargetScan, miRTarBase, miRDB databases. The combination of miR-96-5p and ZDHHC5 was verified by luciferase receptor assay. To further study the function and mechanism of miR-96-5p, we treated MGC-803 cells with miR-96-5p inhibitor and si-ZDHHC5, then detected cell viability, apoptosis, migration and invasion ability, as well as the expression of ZDHHC5, Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, and COX-2 by Western blot. Results: Compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p were significantly reduced in GAC tumor samples (P<0.01), which were consistent with bioinformatics analysis. Furthermore, ZDHHC5 was defined as a direct target gene of miR-96-5p. miR-96-5p silence significantly reduced cell viability, increased cell apoptosis, and suppressed cell migration and invasion, as well as inhibited the expression of Bcl-2 and COX-2 and promoted Bax, cleaved caspase-3 and cleaved caspase-9 level in MGC-803 cells (P<0.01). Notably, ZDHHC5 silence reversed the inhibiting effects of miR-96-5p on MGC-803 cells growth and metastasis Conclusion: Our findings identified six microRNAs (miRNAs; miR-96-5p, miR-222-5p, miR-652-5p, miR-125-5p, miR-145-3p, and miR-379-3p) related to GAC prognosis, and suggested that down-regulated miR-96-5p might inhibit tumor cell growth and metastasis via increasing ZDHHC5 expression enhance MGC-803 cell apoptosis, as well as decrease MGC-803 cell metastasis.


Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5455-5462 ◽  
Author(s):  
Michael Wang ◽  
Liang Zhang ◽  
Xiaohong Han ◽  
Jing Yang ◽  
Jianfei Qian ◽  
...  

Abstract Atiprimod is a novel cationic amphiphilic compound and has been shown to exert antimyeloma effects both in vitro and in mouse experiments. This study was undertaken to evaluate the therapeutic efficacy of atiprimod on mantle cell lymphoma (MCL) and elucidate the mechanism by which it induces cell apoptosis. Atiprimod inhibited the growth and induced apoptosis of MCL cell lines and freshly isolated primary tumor cells in vitro. More importantly, atiprimod significantly inhibited tumor growth in vivo and prolonged the survival of tumor-bearing mice. However, atiprimod also exhibited lower cytotoxicity toward normal lymphocytes. Atiprimod activated c-Jun N-terminal protein kinases (JNK) and up-regulated the level of Bax, Bad, and phosphorylated Bcl-2, resulting in release of apoptosis-inducing factor (AIF) and cytochrome c from mitochondria and activation and cleavage of caspase-9, caspase-3, and PARP. However, AIF, but not activation of caspases or PARP, was responsible for apoptosis in MCL cells because an AIF inhibitor, but not pan-caspase or paspase-9 inhibitors, completely abrogated atiprimod-induced apoptosis. Taken together, our results demonstrate that atiprimod displays a strong anti-MCL activity. Cell apoptosis was induced mainly via activation of the AIF pathway. These results support the use of atiprimod as a potential agent in MCL chemotherapy.


2017 ◽  
Vol 42 (2) ◽  
pp. 469-479 ◽  
Author(s):  
Yuanqin Yin ◽  
Fei Li ◽  
Songlin Li ◽  
Jingjing Cai ◽  
Jing Shi ◽  
...  

Background/Aims: We investigated the correlation between toll-like receptor 4 (TLR4) and β-catenin for disclosing the potential pathogenesis of hepatocellular carcinoma (HCC). Methods: Immunohistochemical toolkit was implemented to measure the expression of TLR4 and β-catenin in 98 cases of HCC tissues and adjacent tissues. After setting up the HepG2.2.15 hepatitis B virus (HBV) related HCC cell line, we divided the cells into the control group, TLR4 siRNA group, β-catenin siRNA group, and pcDNA.3.1 TLR4 + β-catenin siRNA group. Western blot, CCK-8 method, Transwell and flow cytometry were used to detect protein expression, cell proliferation, cell migration and invasion as well as cell apoptosis, respectively. Nude mice tumor model was established to observe the effects of TLR4 and β-catenin on the progression of HBV-related HCC in vivo. Results:The positive rates of TLR4 and β-catenin were higher in HCC tissues compared with normal tissues. Both the TLR4 siRNA group and β-catenin siRNA group exhibited a decreased expression of β-catenin. The proliferation, migration and invasion of tumor cells in the above two groups were suppressed, while the cell apoptosis appeared to be stimulated. As suggested by the results from in vivo and in vitro experiments, the up-regulation of TLR4 could antagonize the corresponding effect of β-catenin siRNA. Conclusions: TLR4 can affect the expression of β-catenin and hence influence the progression of HBV-related HCC.


2021 ◽  
Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined.Methods: Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1.Results: Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC.Conclusions: CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2020 ◽  
Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined.Methods: Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1.Results: Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC.Conclusions: CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


Author(s):  
Mengjun Luo ◽  
Yanfeng Liu1 ◽  
Nannan Liu ◽  
Weiqing Shao ◽  
Lijun Ming ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. At present, drug options for systemic treatment of HCC are very limited. There is an urgent need to develop additional effective drugs for HCC treatment. In the present study, we found that proscillaridin A (ProA), a cardiac glycoside, exerted a strong anticancer effect on multiple HCC cell lines. ProA significantly inhibited the cell proliferation, migration, and invasion of HCC cells. ProA also had a marked inhibitory effect on the progression of HCC in the MHCC97H xenograft nude mouse model. ProA-mediated suppression of HCC was closely related to cell apoptosis. ProA-treated HCC cells displayed significant mitochondrial damage and elevated reactive oxygen species production, resulting in profound cell apoptosis. Meanwhile, ProA also played a role in autophagy induction in HCC cells. Defects in autophagy partially relieved ProA’s anticancer effect in HCC cells. Our findings demonstrate that ProA can effectively inhibit HCC progression and may serve as a potential therapeutic agent for HCC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuan Cai ◽  
Qing Du ◽  
Tian-Hao Deng ◽  
Bing-Bing Shen ◽  
Yan-Mei Peng ◽  
...  

Huxie Huaji (HXHJ) Ointment is a famous traditional Chinese medicinal prescription and is commonly used for the clinical treatment of hepatocellular carcinoma by boosting immunity and detoxification. However, the scientific evidence for the effect of HXHJ Ointment on hepatocellular carcinoma and the underlying molecular mechanism are lacking. The present study aimed to identify the effects of HXHJ Ointment on hepatocellular carcinoma in vitro and in vivo as well as investigating the mechanistic basis for the anticancer effect of HXHJ ointment. First, liquid chromatography-mass spectrometry was used to verify the composition of HXHJ Ointment and quality control. Second, in vitro, Cell Counting Kit (CCK8) cell viability assay and Hoechst 33342 staining assay were performed to explain the cell apoptosis. The protein levels of tumor suppressor protein (p53), B-cell lymphoma 2 gene (Bcl-2), cytochrome C (Cyt-C), and aspartate proteolytic enzyme-3 (caspase-3) were examined by immunofluorescence. Finally, in vivo, hematoxylin and eosin (H&E) staining was used to observe the pathological changes in hepatocellular carcinoma samples. Western blots and immunohistochemistry were used to detect the anticancer properties of HXHJ ointment. The results in vitro showed that 20% HXHJ Ointment serum could significantly inhibit HepG2 cell proliferation, increased tumor suppressor gene p53, downregulated antiapoptotic protein Bcl-2, promoted the release of mitochondrial Cyt-C, activated caspase-3, and induced HepG2 cell apoptosis. Furthermore, in vivo experiments showed that HXHJ Ointment could effectively inhibit tumor growth in nude mice xenotransplanted with HepG2 cells, changed the morphology of tumor cells, and regulated the expression of apoptosis-related protein pathway p53/Bcl-2/Cyt-C/caspase-3. HXHJ Ointment can significantly inhibit the development of hepatocellular carcinoma, and its mechanism may be related to the regulation of p53/Bcl-2/Cyt-C/caspase-3 signaling pathway to induce cell mitochondrial apoptosis.


Sign in / Sign up

Export Citation Format

Share Document