scholarly journals Role of Snf-β in lipid accumulation in the high lipid‐producing fungus Mucor circinelloides WJ11

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Shaista Nosheen ◽  
Tahira Naz ◽  
Junhuan Yang ◽  
Syed Ammar Hussain ◽  
Abu Bakr Ahmad Fazili ◽  
...  

Abstract Background Mucor circinelloides WJ11 is a high-lipid producing strain and an excellent producer of γ-linolenic acid (GLA) which is crucial for human health. We have previously identified genes that encode for AMP-activated protein kinase (AMPK) complex in M. circinelloides which is an important regulator for lipid accumulation. Comparative transcriptional analysis between the high and low lipid-producing strains of M. circinelloides showed a direct correlation in the transcriptional level of AMPK genes with lipid metabolism. Thus, the role of Snf-β, which encodes for β subunit of AMPK complex, in lipid accumulation of the WJ11 strain was evaluated in the present study. Results The results showed that lipid content of cell dry weight in Snf-β knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-β overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-β gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-β knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-β overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-β manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-β control lipid metabolism by regulating ACC1 gene. Conclusions Our results suggested that Snf-β gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-β in lipid accumulation in M. circinelloides.

RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97658-97664 ◽  
Author(s):  
Lina Zhao ◽  
Xin Tang ◽  
Xiao Luan ◽  
Haiqin Chen ◽  
Yong Q. Chen ◽  
...  

Overexpressing the genes coding for glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from the pentose phosphate pathway in the oleaginous fungusMucor circinelloidesincreased the lipid content of cell dry weight by 20–30%.


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60673-60682 ◽  
Author(s):  
Xinyi Zan ◽  
Xin Tang ◽  
Lina Zhao ◽  
Linfang Chu ◽  
Haiqin Chen ◽  
...  

The filamentous fungusMucor circinelloideshas been widely used as a model organism to investigate the mechanisms of lipid accumulation.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1078
Author(s):  
Debasish Roy ◽  
Andrea Tedeschi

Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and disease.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zheng Ma ◽  
Na Luo ◽  
Lu Liu ◽  
Huanxian Cui ◽  
Jing Li ◽  
...  

Abstract Background A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. Results Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. Conclusions Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.


Author(s):  
Shinya Ikematsu ◽  
Ipputa Tada ◽  
Yasuma Nagasaki

Petroleum reserves have been decreasing in recent years and microalgae are attractive as a potential source of new biomass petroleum. Microalgae are unicellar microscopic algae and most species microalgae produce lipids. In particular, Botryococcus braunii produces large amount of lipids found with nearly 70% on the basis of the dry weight. This chapter reviews high lipid-producing microalgae found from Okinawa area around National Institute of Technology, Okinawa College (NIT, Okinawa). The microalgae collected were isolated on an AF-6 agar plates, and incubated in AF-6 medium. The fatty acids were extracted from the algae, converted into fatty acid methyl esters, and analysed by GC/MS. As a result, two microalgae strains were identified that the produced fatty acids was loaded in the algae with nearly 20% in the dry weight base. In addition, these two microalgae strains produced palmitic acid as nearly 40% of the total produced lipids. Therefore, the two microalga strains isolated are potentially and highly efficient for the organisms applied for the production of biodiesel fuel.


2018 ◽  
Vol 49 (5) ◽  
pp. 1870-1884 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ciao-Han Wei ◽  
Ya-Ling Chen ◽  
Ching-Yi Cheng ◽  
Chia-Ling Wang ◽  
...  

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.


2009 ◽  
Vol 21 (1) ◽  
pp. 154 ◽  
Author(s):  
M. Barcelo-Fimbres ◽  
G. E. Seidel

The objective of this experiment was to evaluate lipid accumulation and embryonic development of bovine morulae treated with different chemicals. A total of 2619 slaughterhouse oocytes from heifers and mature cows were matured in CDM medium (similar to SOF) plus 0.5% fatty acid-free BSA and hormones (M-CDM) for 23 h at 38.5°C in 5% CO2 in air. Frozen–thawed sperm were centrifuged through a Percoll gradient and co-cultured with matured oocytes for 18 h in F-CDM (CDM+heparin). Zygotes were cultured at 38.5°C in 5% CO2/5% O2/90% N2 in CDM-1 with nonessential amino acids, 10 μm EDTA, 0.5% fatty acid free BSA, and 0.5 mm fructose. After 60 h, resulting 8-cell embryos were cultured 120 h in CDM-2 (CDM-1+essential amino acids and 2 mm fructose). A factorial design was used with 7 treatments, 2 ovary sources (cows v. heifers), and 3 bulls (A, B and C) replicated twice for each bull (6 replicates). At Day 2.5 embryo cleavage and 8-cell rates were evaluated, and on Day 6 a total of 755 morulae were randomly assigned to the 7 treatments (control, 2 and 8 mm caffeine, 1 and 4 μm epinephrine, and 10 and 40 μm forskolin). To quantify lipid accumulation, Day 7 blastocysts were fixed and stained with 1 μg mL–1 Nile red dye, after which a digital photograph of the equatorial part of the embryo (including the inner cell mass) was taken at 200×, and fluorescence intensity was measured with Image Pro software from 0 to 255 shades for each pixel (0 = no lipids; 255 = greatest lipid accumulation), as previously reported (Biol. Reprod. 2007 (Suppl. 1), 87–88). Data were analyzed by ANOVA. No differences in cleavage rates (75 v. 68 ± 3.6%) or eight cell rates (61 ± v. 57 ± 2.8%) were found for heifer v. cow oocytes (P > 0.1); however, blastocyst rates per oocyte and per 8-cell embryo were greater for cows than heifers (20 v. 10 ± 2.1%, and 68 v. 35 ± 3.8%, respectively; P < 0.05). Treatments: 2 and 8 mm caffeine produced fewer blastocysts per morula than 1 and 4 μm epinephrine, 10 and 40 μm forskolin and the control (39, 5 v. 54, 49, 48, 54 and 52 ± 5.8%; respectively) (P < 0.01). More lipid content was found in whole embryos and trophoblast of heifer-derived than cow blastocysts (P < 0.05), and forskolin resulted in less lipid content than control, caffeine- and epinephrine-treated morulae in whole embryos, embryonic mass and trophoblasts (P < 0.05; Table 1). In conclusion, mature cows were a better source of oocytes than feedlot heifers for embryonic development. High doses of caffeine were detrimental to embryos, and the addition of the lypolitic agent forskolin reduced lipid content relative to control, caffeine and epinephrine-treated embryos. Table 1.Main effect treatment means of lipid content (arbitrary fluorescence units)


2001 ◽  
Vol 29 (2) ◽  
pp. 250-267 ◽  
Author(s):  
R. J. A. Wanders ◽  
P. Vreken ◽  
S. Ferdinandusse ◽  
G. A. Jansen ◽  
H. R. Waterham ◽  
...  

Peroxisomes are subcellular organelles with an indispensable role in cellular metabolism. The importance of peroxisomes for humans is stressed by the existence of a group of genetic diseases in humans in which there is an impairment in one or more peroxisomal functions. Most of these functions have to do with lipid metabolism including the α and β-oxidation of fatty acids. Here we describe the current state of knowledge about peroxisomal fatty acid α- and β-oxidation with particular emphasis on the following: (1) the substrates β-oxidized in peroxisomes; (2) the enzymology of the α- and β-oxidation systems; (3) the permeability properties of the peroxisomal membrane and the role of the different transporters therein; (4) the interaction with other subcellular compartments, including the mitochondria, which are the ultimate site of NADH reoxidation and full degradation of acetyl-CoA to CO2 and water; and (5) the different disorders of peroxisomal α- and β-oxidation.


1971 ◽  
Vol 28 (5) ◽  
pp. 776-777 ◽  
Author(s):  
Roger H. Green

The relict amphipod Pontoporeia affinis at 100 m depth in Cayuga Lake, New York, had a lipid content of 33.1% of dry weight, which is unusually high for a benthic crustacean. This high lipid content resulted in the unusually high caloric content of 5240 cal/g dry weight, and a mean annual standing crop of 370 cal/m2. Annual production was estimated to be 1565 cal/m2 per year. In confirmation of the high caloric value, P. affinis from an oligotrophic lake in northwestern Ontario had a caloric content of 4741 cal/g dry weight.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenhua Yang ◽  
Yue Zhao ◽  
Zhiyong Liu ◽  
Chenfeng Liu ◽  
Zhipeng Hu ◽  
...  

Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.


Sign in / Sign up

Export Citation Format

Share Document