scholarly journals Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zheng Ma ◽  
Na Luo ◽  
Lu Liu ◽  
Huanxian Cui ◽  
Jing Li ◽  
...  

Abstract Background A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. Results Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. Conclusions Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.

2021 ◽  
Author(s):  
zheng ma ◽  
Na Luo ◽  
Lu Liu ◽  
Huanxian Cui ◽  
Jing Li ◽  
...  

Abstract Background: The body distribution with high intramuscular fat and low abdominal fat is ideal goal for broiler breeding. Preadipocytes with different origins have differences in metabolism and gene expression. This transcriptome analysis of intramuscular preadipocytes (DIMPs) and adipose tissue-derived preadipocytes (DAFPs) is aim to explore the characteristics in lipid deposition of different chicken preadipocytes by dedifferentiation in vitro. Results: Compared to DAFPs, the total lipid content was decreased (P <0.05) in DIMFPs after two days with 100% confluence. Moreover, 72 DEGs related to lipid metabolism were screened, which are involved in the adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating a main contribution to the regulation of the difference of lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were down-regulated, but ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, SLC27A6 genes were up-regulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK-, TGF beta-, Calcium-, PPAR signaling pathway) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference of lipid deposition between chicken DAFPs and DIMFPs were proposed based on the above information.Conclusions: Our data suggested the difference of lipid deposition between DIMPs and DAFPs of chicken in vitro, and proposed the molecular regulatory network for the difference of lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and optimizing body fat distribution in broilers.


2020 ◽  
Author(s):  
zheng ma ◽  
Na Luo ◽  
Lu Liu ◽  
Huanxian Cui ◽  
Jing Li ◽  
...  

Abstract Background: The body distribution with high intramuscular fat and low abdominal fat is ideal goal for broiler breeding. Preadipocytes with different origins have differences in metabolism and gene expression. This transcriptome analysis of intramuscular preadipocytes (DIMPs) and adipose tissue-derived preadipocytes (DAFPs) is aim to explore the characteristics in lipid deposition of different chicken preadipocytes by dedifferentiation in vitro. Results: Compared to DIMFPs, the lipid content was increased (P <0.05) in DAFPs after two days with 100% confluence. Moreover, 66 DEGs of lipid metabolism were screened, which are involved in the adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among them, the representative CEBPA, DGKH, DGKQ, DGKD, FADS1L1, SCD, SCD5, and PPARG were down-regulated, but CIDEC, ELOVL1, ELOVL6, FABP3, FABP4, FADS6, LPL, MOGAT1, PLIN3, PLIN4, RBP7, and RXRG genes were up-regulated (P < 0.05 or P < 0.01) in the DAFPs, showing the same pattern with the lipid content. Based on the known DEGs, the well-known pathways affecting lipid metabolism (MAPK-, TGF beta-, Calcium-, PPAR signaling pathway) were enriched, which may also contribute to the regulation of lipid deposition. Conclusions: Our data suggest that the difference of lipid deposition between DIMPs and DAFPs of chicken in vitro. The lipid content was significantly increased in DAFPs by the up-regulation of genes on cellular uptake of fatty acids through medication of MAPK-, TGF beta-, Calcium-, and PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and optimizing body fat distribution in broilers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Charlotte H. Hulme ◽  
Anna Nicolaou ◽  
Sharon A. Murphy ◽  
Alexander E. P. Heazell ◽  
Jenny E. Myers ◽  
...  

Abstract Diabetes mellitus (DM) during pregnancy can result in fetal overgrowth, likely due to placental dysfunction, which has health consequences for the infant. Here we test our prediction from previous work using a placental cell line that high glucose concentrations affect placental lipid metabolism. Placentas from women with type 1 (n = 13), type 2 (n = 6) or gestational (n = 12) DM, BMI-matched to mothers without DM (n = 18), were analysed for lipase and fatty acid transport proteins and fatty acid and triglyceride content. Explants from uncomplicated pregnancies (n = 6) cultured in physiological or high glucose were similarly analysed. High glucose levels did not alter placental lipase or transporter expression or the profile and abundance of fatty acids, but triglyceride levels were higher (p < 0.05), suggesting reduced β- oxidation. DM did not affect placental protein expression or fatty acid profile. Triglyceride levels of placentas from mothers with pre-existing DM were similar to controls, but higher in obese women with gestational DM. Maternal hyperglycemia may not affect placental fatty acid uptake and transport. However, placental β-oxidation is affected by high glucose and reduced in a subset of women with DM. Abnormal placental lipid metabolism could contribute to increased maternal-fetal lipid transfer and excess fetal growth in some DM pregnancies.


2007 ◽  
Vol 51 (4) ◽  
pp. 1425-1430 ◽  
Author(s):  
M. Rakotomanga ◽  
S. Blanc ◽  
K. Gaudin ◽  
P. Chaminade ◽  
P. M. Loiseau

ABSTRACT Miltefosine (hexadecylphosphocholine [HePC]) is the first orally active antileishmanial drug. Transient HePC treatment of Leishmania donovani promastigotes at 10 μM significantly reduced the phosphatidylcholine content and enhanced the phosphatidylethanolamine (PE) content in parasite membranes, suggesting a partial inactivation of PE-N-methyltransferase. Phospholipase D activity did not seem to be affected by HePC. In addition, the enhancement of the lysophosphatidylcholine content could be ascribed to phospholipase A2 activation. Moreover, transient HePC treatment had no effect on the fatty acid alkyl chain length or the fatty acid unsaturation rate. Concerning sterols, we found a strong reduction of the C24 alkylated sterol content, and the enhancement of the cholesterol content could be the result of the HePC condensation effect with sterols. Because some of the effects observed after transient HePC treatment were different from those previously observed in HePC-resistant parasites, it could be hypothesized that continuous in vitro drug pressure induces the mechanisms of regulation in Leishmania lipid metabolism.


1986 ◽  
Vol 106 (3) ◽  
pp. 445-448 ◽  
Author(s):  
T. Gerson ◽  
A. John ◽  
A. S. D. King

SummaryTwo experiments were carried out to test the effects of ryegrass maturity on rumen lipid metabolism. In the first experiment the effect of stage of maturity of perennial ryegrass on lipid metabolism in the rumen was studied with grazing sheep fitted with rumen cannulae. The pasture was either immature (13·8% crude protein), mature (8·1% crude protein) or senescent (5·5% crude protein).The ratesin vitroof triacyl glycerol lipolysis and linoleic acid (18: 2w6) hydrogenation were found to decrease with increasing age of the ryegrass.In the second experiment the sheep were dosed with emulsified linseed oil (30 g) via rumen cannulae while grazing immature or senescent ryegrass and the rumen digesta and blood plasma sampled at 0, 4 and 8 h after dosing.The proportions of linseed oil retained in the rumen were greater and blood plasma linoleic (18:2w6) and linolenic (18:3w3) acid concentrations higher when senescent ryegrass was fed.It was concluded that the rates of rumen lipolysis and hydrogenation decreased with the age of pasture and that after dosing with linseed oil the polyunsaturated fatty acid concentrations in blood plasma increased.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Hong Ao ◽  
Shaokang Chen ◽  
Ting Yang ◽  
...  

AbstractFat deposition is very important in pig production, and its mechanism is not clearly understood. MicroRNAs (miRNAs) play critical roles in fat deposition and energy metabolism. In the current study, we investigated the mRNA and miRNA transcriptome in the livers of Landrace pigs with extreme backfat thickness to explore miRNA-mRNA regulatory networks related to lipid deposition and metabolism. A comparative analysis of liver mRNA and miRNA transcriptomes from pigs (four pigs per group) with extreme backfat thickness was performed. We identified differentially expressed genes from RNA-seq data using a Cufflinks pipeline. Seventy-one differentially expressed genes (DEGs), including twenty-eight well annotated on the porcine reference genome genes, were found. The upregulation genes in pigs with higher backfat thickness were mainly involved in fatty acid synthesis, and included fatty acid synthase (FASN), glucokinase (GCK), phosphoglycerate dehydrogenase (PHGDH), and apolipoprotein A4 (APOA4). Cytochrome P450, family 2, subfamily J, polypeptide 34 (CYP2J34) was lower expressed in pigs with high backfat thickness, and is involved in the oxidation of arachidonic acid. Moreover, 13 differentially expressed miRNAs were identified. Seven miRNAs were associated with fatty acid synthesis, lipid metabolism, and adipogenic differentiation. Based on comprehensive analysis of the transcriptome of both mRNAs and miRNAs, an important regulatory network, in which six DEGs could be regulated by differentially expressed miRNAs, was established for fat deposition. The negative correlate in the regulatory network including, miR-545-5p and GRAMD3, miR-338 and FASN, and miR-127, miR-146b, miR-34c, miR-144 and THBS1 indicate that direct suppressive regulation may be involved in lipid deposition and energy metabolism. Based on liver mRNA and miRNA transcriptomes from pigs with extreme backfat thickness, we identified 28 differentially expressed genes and 13 differentially expressed miRNAs, and established an important miRNA-mRNA regulatory network. This study provides new insights into the molecular mechanisms that determine fat deposition in pigs.


1987 ◽  
Vol 253 (2) ◽  
pp. G171-G178
Author(s):  
M. Hatch

Short-chain fatty acid (SCFA) metabolism and transport were examined in vitro across isolated rabbit cecal epithelia whose primary function is absorption of these solutes. This study shows that although there was some low-level metabolism of SCFAs to ketone bodies by the isolated cecum, a significantly higher oxygen consumption was sustained for a longer time period by tissues incubated in glucose-containing salines. The cecum supported a significant net secretory flux of acetate (J net Ac- = -1.13 +/- 0.13 mu eq X cm-2 X h-1) and propionate (J net Pr- = -0.61 +/- 0.14 mu eq X cm-2 X h-1). This study also shows that glucose significantly enhanced short-circuit current (Isc), tissue conductance (Gt), and sodium transport across this tissue. Neither Ac- nor Pr- enhanced net sodium flux (J net Ac-) but Pr- significantly reduced net chloride flux (J net Cl-), whereas Ac- had no effect. The increase in Isc and Gt observed in the presence of SCFAs was attributable to the presence of SCFA in the serosal bathing solution alone. To explain the latter finding and the unexpected finding of SCFA secretion, the existence of an electrogenic anion (HCO3-) secretory pathway is postulated. It is suggested that this system can accommodate SCFAs in vitro and that it is a Na+-dependent system located on the basolateral membrane of the cecal cell.


2018 ◽  
Vol 49 (5) ◽  
pp. 1870-1884 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ciao-Han Wei ◽  
Ya-Ling Chen ◽  
Ching-Yi Cheng ◽  
Chia-Ling Wang ◽  
...  

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.


2015 ◽  
Vol 27 (1) ◽  
pp. 119
Author(s):  
A. Ruiz ◽  
P. J. Hansen ◽  
J. Block

The objective was to determine the effects of addition of l-carnitine (LC) and trans-10, cis-12 conjugated linoleic acid (CLA) during bovine embryo culture on cryosurvival, lipid content, and gene expression. For all experiments, embryos were produced in vitro using abattoir-derived oocytes. Following insemination, presumptive zygotes were randomly assigned in a 2 × 2 factorial to be cultured in SOF-BE1 supplemented with or without 3.03 mM LC and 100 μM CLA until Day 7. For Exp. 1, blastocyst- and expanded-blastocyst-stage embryos (n = 777) were slow-frozen in 1.5 M ethylene glycol. Embryos were thawed and then cultured for 72 h. Re-expansion and hatching rates were recorded at 24, 48, and 72 h. There was no effect of LC on post-thaw re-expansion rates, but CLA reduced (P < 0.05) and tended (P < 0.08) to reduce re-expansion rate at 24 and 48 h, respectively (76.5 ± 2.5 v. 70.4 ± 2.5 and 79.5 ± 2.2 v. 76.0 ± 2.2, respectively). Whereas hatching rate at 72 h tended (P < 0.08) to be higher for embryos cultured with LC (67.8 ± 2.5 v. 74.4 ± 2.5), treatment with CLA reduced (P < 0.05) hatching rate at 48 h (62.3 ± 2.6 v. 54.9 ± 2.6). In Exp. 2, to determine lipid content, expanded blastocyst-stage embryos (n = 263) were harvested and stained using Nile Red. Embryos were examined for fluorescence using an epifluorescence microscope, and intensity of fluorescence per unit area was quantified using ImageJ software (NIH, Bethesda, MD, USA). There was a significant interaction (P < 0.01) between LC and CLA affecting embryo lipid content. Whereas addition of CLA during culture increased lipid, treatment with LC and the combination of LC and CLA reduced lipid (22.8 ± 1.1 v. 19.1 ± 1.1 v. 28.4 ± 1.1 v. 19.2 ± 1.2 for no additive, +LC, +CLA, and +LC and CLA, respectively). For Exp. 3, the effect of LC and CLA on the relative abundance of genes involved in lipid metabolism (ELOVL6, SCD1, SQLE, HMGCS1, CYP51A1, FDPS, FDFT1, LDLR, and SC4MOL) was determined. Pools of 5 expanded blastocyst-stage embryos from each treatment were collected across 5 replicates. The RNA was purified and synthesised into cDNA for RT-qPCR analysis. The SDHA, GAPDH, and YWAZ were used as housekeeping genes. Addition of LC during culture reduced (P < 0.05) the abundance of 4 of the 9 genes analysed (SQLE, HMGCS1, CYP51A1, and FDPS) and tended (P < 0.08) to reduce a fifth (FDFT1). In addition, there was a tendency (P < 0.08) for LC to increase the abundance of SCD1. Addition of CLA during culture had minimal effects on transcript abundance. In particular, CLA treatment reduced (P < 0.01) ELOVL6 and tended (P < 0.08) to increase SCD1. In contrast to previous studies, post-thaw cryosurvival was not significantly improved by treatment with LC or CLA. Results indicate that reduced embryo lipid content caused by LC treatment is due, in part, to an alteration in the abundance of genes involved in lipid metabolism. Further research is still necessary to determine whether in vivo survival following transfer of cryopreserved embryos can be enhanced by treatment with LC or CLA.Support was provided by USDA AFRI Grant 2010–85122–20623.


2009 ◽  
Vol 21 (1) ◽  
pp. 154 ◽  
Author(s):  
M. Barcelo-Fimbres ◽  
G. E. Seidel

The objective of this experiment was to evaluate lipid accumulation and embryonic development of bovine morulae treated with different chemicals. A total of 2619 slaughterhouse oocytes from heifers and mature cows were matured in CDM medium (similar to SOF) plus 0.5% fatty acid-free BSA and hormones (M-CDM) for 23 h at 38.5°C in 5% CO2 in air. Frozen–thawed sperm were centrifuged through a Percoll gradient and co-cultured with matured oocytes for 18 h in F-CDM (CDM+heparin). Zygotes were cultured at 38.5°C in 5% CO2/5% O2/90% N2 in CDM-1 with nonessential amino acids, 10 μm EDTA, 0.5% fatty acid free BSA, and 0.5 mm fructose. After 60 h, resulting 8-cell embryos were cultured 120 h in CDM-2 (CDM-1+essential amino acids and 2 mm fructose). A factorial design was used with 7 treatments, 2 ovary sources (cows v. heifers), and 3 bulls (A, B and C) replicated twice for each bull (6 replicates). At Day 2.5 embryo cleavage and 8-cell rates were evaluated, and on Day 6 a total of 755 morulae were randomly assigned to the 7 treatments (control, 2 and 8 mm caffeine, 1 and 4 μm epinephrine, and 10 and 40 μm forskolin). To quantify lipid accumulation, Day 7 blastocysts were fixed and stained with 1 μg mL–1 Nile red dye, after which a digital photograph of the equatorial part of the embryo (including the inner cell mass) was taken at 200×, and fluorescence intensity was measured with Image Pro software from 0 to 255 shades for each pixel (0 = no lipids; 255 = greatest lipid accumulation), as previously reported (Biol. Reprod. 2007 (Suppl. 1), 87–88). Data were analyzed by ANOVA. No differences in cleavage rates (75 v. 68 ± 3.6%) or eight cell rates (61 ± v. 57 ± 2.8%) were found for heifer v. cow oocytes (P > 0.1); however, blastocyst rates per oocyte and per 8-cell embryo were greater for cows than heifers (20 v. 10 ± 2.1%, and 68 v. 35 ± 3.8%, respectively; P < 0.05). Treatments: 2 and 8 mm caffeine produced fewer blastocysts per morula than 1 and 4 μm epinephrine, 10 and 40 μm forskolin and the control (39, 5 v. 54, 49, 48, 54 and 52 ± 5.8%; respectively) (P < 0.01). More lipid content was found in whole embryos and trophoblast of heifer-derived than cow blastocysts (P < 0.05), and forskolin resulted in less lipid content than control, caffeine- and epinephrine-treated morulae in whole embryos, embryonic mass and trophoblasts (P < 0.05; Table 1). In conclusion, mature cows were a better source of oocytes than feedlot heifers for embryonic development. High doses of caffeine were detrimental to embryos, and the addition of the lypolitic agent forskolin reduced lipid content relative to control, caffeine and epinephrine-treated embryos. Table 1.Main effect treatment means of lipid content (arbitrary fluorescence units)


Sign in / Sign up

Export Citation Format

Share Document