scholarly journals Knockdown of AGGF1 inhibits the invasion and migration of gastric cancer via epithelial–mesenchymal transition through Wnt/β-catenin pathway

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Han-Hui Yao ◽  
Ya-Jun Zhao ◽  
Yi-Fu He ◽  
Da-Bing Huang ◽  
Wei Wang
2019 ◽  
Vol 60 (5-6) ◽  
pp. 208-218 ◽  
Author(s):  
Tao Xiao ◽  
Zhigang Jie

Background: Gastric cancer (GC) is one of the most common malignant tumors. It is likely to occur in lymph nodes and is prone to distant metastasis in its early stages, which portends a poor prognosis. Previous studies have shown that miRNA-21 was abnormally highly expressed and associated with early metastasis in GC, but the mechanism by which it regulates the invasion and metastasis of GC has not been elucidated. Methods: Epithelial-mesenchymal transition (EMT) is an important pathologic basis of tumor invasion and metastasis, and in this study, the relationship between miRNA-21 and EMT in GC invasion and metastasis was investigated using RT-qPCR, Western blot, and wound scratch and transwell assays. Results: We found that miRNA-21 expression in GC cell lines was higher than in a gastric mucosal epithelial cell line. After transfection with an miRNA-21 mimic, the upregulation of EMT was found to promote migration and invasion of MGC-803 cells. However, the downregulation of EMT was found to accompany the inhibition of invasion and migration of GC cells after downregulation of miRNA-21 expression due to the transfection of an miRNA-21 inhibitor. Conclusions: These findings suggest that miRNA-21 might promote the invasion and metastasis of GC by upregulating EMT.


2021 ◽  
Author(s):  
xiaolan you ◽  
Jian Wu ◽  
Xiaojun Zhao ◽  
Xingyu Jiang ◽  
Wenxuan Tao ◽  
...  

Abstract Background The gastric cancer (GC) microenvironment has important effects on biological behaviors, such as tumor cell invasion and metastasis. However, the mechanism by which the GC microenvironment promotes GC cell invasion and metastasis is unknown. The present study aimed to clarify the effects and mechanism of galectin-1 (GAL-1, encoded by LGALS1) on GC invasion and metastasis in the GC microenvironment.Methods The expression of GAL-1/ LGALS1 was determined using western blotting, immunohistochemistry, and quantitative real-time reverse transcription PCR in GC tissues. Besides, methods including stable transfection, Matrigel invasion and migration assays, and wound-healing assays in vitro; and metastasis assays in vivo, were also conducted.Results GAL-1 from cancer-associated fibroblasts (CAFs) induced the epithelial‑mesenchymal transition (EMT) of GC cells though the transforming growth factor beta (TGF-β1)/ Sma- and mad-related protein (Smad) pathway, and affected the prognosis of patients with GC. The level of GAL-1 was high in CAFs, and treating MGC-803 and SGC -7901 cell line with the conditioned medium from CAFs promoted their invasion and metastasis abilities. Overexpression of LGALS1 promoted the expression of TGF-β1 and induced EMT of GC cell lines. A TGF-β1 antagonist inhibited the invasion and migration of GC cells. In vivo, overexpression of LGALS1 promoted GC growth and metastasis, and the TGF-β1 antagonist dramatically reversed these events. Conclusions These findings suggested that high expression of GAL-1 in the GC microenvironment predicts a poor prognosis in patients with GC by promoting the migration and invasion of GC cells via EMT through the TGF-β1/Smad signaling pathway. The results might provide new therapeutic targets to treat GC.


Author(s):  
Chen-hui Bao ◽  
Lin Guo

Background: Gastric cancer (GC) accounts for high mortality, which seriously threatens people’s health. This study set out to probe into the effect and mechanism of miR-27b-3p on invasion and migration of GC. Methods: The miRNA sequence data of GC was acquired from The Cancer Genome Atlas (TCGA) database. The differential expression of miRNAs (DEMis) was acquired through R packages “edgeR” and “limma.” TargetScan, picTar, RNA22, PITA, and miRanda were performed to predict the target gene of miR-27b-3p. Western-blot and RT-PCR were applied to detect the expression level of the selected candidate. Transwell assays evaluated the effect of miR-27b-3p and runt-related transcription factor 1 (RUNX1) on cell migration and invasion. The rescue assay was achieved by co-culture with mimics of miR-27b-3p and vector of RUNX1. The psiCHECK2 vector was used in the luciferase report assay. Results: We found miR-27b-3p was down-regulated in GC and associated with GC patients' poor survival based on the TCGA data and bioinformatics analysis. Furthermore, RUNX1 was the target gene of miR-27b-3p, which was proved by the luciferase report assay. miR-27b-3p and RUNX1 jointly participate in the regulation of the Hippo pathway. The up-regulated miR-27b-3p could inhibit epithelial–mesenchymal transition (EMT) as well as invasion and migration. However, an overexpressed RUNX1 could weaken this phenomenon. Conclusion: miR-27b-3p was down-regulated in GC, and it could regulate the Hippo pathway and affect EMT by inhibiting RUNX1 expression.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


2017 ◽  
Vol 44 (6) ◽  
pp. 2357-2367 ◽  
Author(s):  
Yiquan Wang ◽  
Chencheng Dai ◽  
Cheng Zhou ◽  
Wenqu Li ◽  
Yujia Qian ◽  
...  

Background/Aims: Benzotriazole (BTR) and its derivatives, such as intermediates and UV stabilizers, are important man-made organic chemicals found in everyday life that have been recently identified as environmental toxins and a threat to female reproductive health. Previous studies have shown that BTR could act as a carcinogen by mimicking estrogen. Environmental estrogen mimics could promote the initiation and development of female cancers, such as endometrial carcinoma, a type of estrogenic-sensitive malignancy. However, there is little information on the relationship between BTR and endometrial carcinoma. In this study, we aimed to demonstrate the biological function of BTR in endometrial carcinoma and explored the underlying mechanism. Methods: The CCK-8 assay was performed to detect cell viability; transwell-filter assay was used to assess cell invasion; gene microarray analysis was employed to determine gene expression patterns in response to BTR treatment; western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were carried out to detect the expression levels of BTR-related genes. Results: Our data showed that BTR could induce the invasion and migration of endometrial carcinoma cells (Ishikawa and HEC-1-B). In addition, BTR increased the expression level of CTBP1, which could enhance the epithelial-mesenchymal transition (EMT) in cancer cells. Moreover, CTBP1 silencing reversed the effect of BTR on EMT progression in endometrial carcinoma cells. Conclusion: This study indicates that BTR could act as a carcinogen to promote the development of endometrial carcinoma mainly through CTBP1-mediated EMT, which deserves more attention.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yigang Zeng ◽  
Jiajia Sun ◽  
Juan Bao ◽  
Tongyu Zhu

Abstract Background Recent studies have confirmed the integration of the BK polyomavirus (BKPyV) gene into the cellular genome of urothelial carcinomas in transplant recipients, further confirming the correlation between BKPyV and urothelial carcinomas after transplantation. However, the role BKPyV infections play in the biological function of bladder cancer remains unclear. Methods We developed a BKPyV-infected bladder cancer cell model and a mice tumor model to discuss the role of BKPyV infections. Results Our research proves that BKPyV infections promote the proliferation, invasion and migration of bladder cancer cells, while the activation of β-catenin signaling pathway is one of its mediation mechanisms. Conclusions We first described BKPyV infection promotes the proliferation, invasion and migration of bladder cancer. We verified the role of β-catenin signaling pathway and Epithelial-Mesenchymal Transition effect in BKPyV-infected bladder cancer. These results provide meaningful information towards the diagnosis and treatment of clinical bladder cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mengting Yang ◽  
Meng Jin ◽  
Kailong Li ◽  
Haifeng Liu ◽  
Xiaxia Yang ◽  
...  

Gastric cancer is the third most common type of tumor associated with death. TRAF6 belongs to the tumor necrosis factor receptor-associated factor family and has been demonstrated to be involved in tumor progression in various cancers. However, the exact effect of TRAF6 on gastric cancer stem cells has not been extensively studied. In this study, abnormal expression of TRAF6 was found in gastric cancer tissues. Overexpression of TRAF6 enhanced proliferation and migration, and TRAF6 knockdown reversed this phenomenon in gastric cancer cells. Moreover, TRAF6 may inhibit differentiation and promote stemness and epithelial-mesenchymal transition (EMT). Transcriptome profiles revealed 701 differentially expressed genes in the wild-type group and the TRAF6 knockout group. Potential molecules associated with cell proliferation and migration were identified, including MAPK, FOXO, and IL-17. In conclusion, TRAF6 is a significant factor promoting proliferation and migration in gastric cancer cells and may provide a new target for the accurate treatment of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document