scholarly journals Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qing Zhang ◽  
Lian Wu ◽  
Shaozheng Liu ◽  
Qingjie Chen ◽  
Lingpeng Zeng ◽  
...  

Abstract Background To investigate the efficacy of a PLGA-based nanobody complex in photodynamic therapy (PDT) and NIR-II imaging in A549 tumor hypoxic model. Method IR1048-MZ was firstly synthesized by conjugating a nitro imidazole group to IR1048. IR1048-MZ and Cat were then encapsulated in PLGA-SH solution. Anti-EGFR-Nanobody was also expressed and purified, and finally Anti-EGFR-Nanobody@PLGA-IR1048MZ-Cat (Nb@IC-NPs) nanobody complex was obtained based on the formation of desulfide bond between PLGA-SH and Anti-EGFR-Nanobody. Size distribution and morphology were characterized by TEM and DLS. Spectrum of Nb@IC-NPs towards NTR was measured by UV and fluorescence, while the particle’s selective response was studied using fluorescence. The uptake of Nb@IC-NPs in A549 cells was observed by flow cytometry and CLSM. In the meantime, its’ catalytic ability that decomposes H2O2 both extra-and intra-cellular was observed by fluorescence and CLSM. In vitro photodynamic toxicity of Nb@IC-NPs was examined by MTT, Live/Dead Cell Staining, Flow Cytometry and Apoptosis Assay. Tumor-bearing model was constructed to observe a semi-quantitative fluorescent distribution and the possibility of NIR-II fluorescence/photoacoustic (PA) imaging. Effect of Nb@IC-NPs on enhancing A549 tumor hypoxia and expression profile of HIF-1α was investigated in the presence of NIR. An A549 tumor metastasis model was also constructed to confirm the complex’ potential to destroy primary tumor, inhibit lung metastasis, and prolong mice’ survival. Lastly, impact of Nb@IC-NPs on mice’ main organs and blood indices was observed. Results Nb@IC-NPs was successfully fabricated with good homogeneity. The fluorescent absorbance of Nb@IC-NPs showed a linear relationship with the concentration of NTR, and a higher concentration of NTR corresponded to a stronger photoacoustic signal. In addition, Nb@IC-NPs showed a stable selectivity toward NTR. Our results also suggested a high efficient uptake of Nb@IC-NPs in A549 cells, which was more efficient than IC-NPs and IR1048-MZ alone. In vitro assays confirmed the effects of Nb@IC-NPs on catalytic O2 generation even in hypoxic cells. The cell viability was upregulated with the nanocomplex at the absence of the laser, whereas it was dramatically declined with laser treatment that excited at 980 nm. Nb@IC-NPs achieved tumor hypoxia NIR-II/PA imaging through assisting A549 gathering. When NIR was applied, Nb@IC-NPs can significantly relieve A549 cellular/tumor hypoxia by generating more reactive oxygen species (ROS), which in turn helps lower the expression level of HIF-1α. In summary, Nb@IC-NPs based PDT can efficiently decimate A549 primary tumor, inhibit metastatic lung cancer, and prolong the lifespan of the mice under tolerable dosage. At last, in vivo toxicity tests of the nanocomplex showed its biosafety to the main organs and normal blood indices values. Conclusion Nb@IC-NPs improves tumor hypoxia through catalytic reaction and lowers the expression level of HIF-1α. It achieves tumor PA imaging through intensified NIR-II fluorescence signal that caused by response of the complex to the lesion’s nitroreductase (NTR). Nb@IC-NPs based PDT can efficiently kill A549 primary tumor, inhibit a lung metastasis, as well as prolong mice’ survival cycle.

2020 ◽  
Author(s):  
Yu Zhang ◽  
Gang Chen ◽  
Feng Zhen Yan ◽  
Fei Li Wang ◽  
Chang Dong Wang

Abstract Background/AIMLung cancer is the most common reason of cancer-related death in worldwide. Hydrogen gas has been found to have effects on a variety of diseases. At present, it is not reported that the effect of hydrogen gas on lung cancer domestic and overseas. Therefore, we designed this experiment to test the differences in the expression of XIAP, BIRC3 and BAX In vivo and in vitro. Materials and methodsA549 cells in logarithmic phase were treated by 20%, 40%, 60% hydrogen gas respectively. Then the apoptosis of different groups were detected by Flow cytometry. We identify the differential expressed genes(DEGs) by transcriptional. The protein expression of XIAP, BIRC3 and BAX were detected by western blot and immunohistochemistry. ResultThe results demonstrated that hydrogen gas can significantly induce apoptosis compared with the control group. The expression of XIAP and BIRC3 were downregulated in hydrogen group. ConclusionHydrogen gas may promote the apoptosis of lung cancer A549 cells by reducing the expression of XIAP and BIRC3 protein.


Author(s):  
Wenyi Dong ◽  
Ke Li ◽  
Shijie Wang ◽  
Ling Qiu ◽  
Qingzhu Liu ◽  
...  

Background: Lung cancer is the leading cause of cancer-associated mortality in the world. Traditional cancer therapies prolong life expectancy of patients but often suffer from adverse reactions. Photodynamic therapy (PDT) has been recommended as a treatment option for lung cancer in several countries, due to its non-invasive procedures, high selectivity and weak side effects. Objective: We have designed and synthesized a biotin receptor-targeted silicon phthalocyanine (IV) (compound 1) which showed good therapeutic effect on biotin receptor-positive tumors. Since the overexpression of biotin receptor (BR) is also present in human lung cancer cells (A549), we explored the therapeutic properties of compound 1 on A549 xenograft tumor models. Method: The selectivity of compound 1 toward A549 cells was studied with fluorescence microscope and IVIS Spectrum Imaging System. The cytotoxicity was measured using MTT assay. In vivo anti-tumor activity was investigated on the nude mice bearing A549 xenografts. Results: In vitro assays proved that compound 1 could selectively accumulate in A549 cells via the BR-mediated internalization. In vivo imaging and distribution experiments showed that compound 1 could selectively accumulate in tumor tissues of tumor-bearing mice. After 16 days of the treatment, the volumes of tumor in PDT group were obviously smaller than that in other groups. Conclusion: This study demonstrates that compound 1 is a promising photosensitizer and has broad application prospects in clinical PDT of lung cancers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shao-Yuan Chen ◽  
Koichi Tsuneyama ◽  
Mao-Hsiung Yen ◽  
Jiunn-Tay Lee ◽  
Jiun-Liang Chen ◽  
...  

AbstractTumor cells have long been recognized as a relative contraindication to hyperbaric oxygen treatment (HBOT) since HBOT might enhance progressive cancer growth. However, in an oxygen deficit condition, tumor cells are more progressive and can be metastatic. HBOT increasing in oxygen partial pressure may benefit tumor suppression. In this study, we investigated the effects of HBOT on solid tumors, such as lung cancer. Non-small cell human lung carcinoma A549-cell-transferred severe combined immunodeficiency mice (SCID) mice were selected as an in vivo model to detect the potential mechanism of HBOT in lung tumors. HBOT not only improved tumor hypoxia but also suppressed tumor growth in murine xenograft tumor models. Platelet endothelial cell adhesion molecule (PECAM-1/CD31) was significantly increased after HBOT. Immunostaining of cleaved caspase-3 was demonstrated and apoptotic tumor cells with nuclear debris were aggregated starting on the 14th-day after HBOT. In vitro, HBOT suppressed the growth of A549 cells in a time-dependent manner and immediately downregulated the expression of p53 protein after HBOT in A549 cells. Furthermore, HBOT-reduced p53 protein could be rescued by a proteasome degradation inhibitor, but not an autophagy inhibitor in A549 cells. Our results demonstrated that HBOT improved tissue angiogenesis, tumor hypoxia and increased tumor apoptosis to lung cancer cells in murine xenograft tumor models, through modifying the tumor hypoxic microenvironment. HBOT will merit further cancer therapy as an adjuvant treatment for solid tumors, such as lung cancer.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Iwona Ziółkowska-Suchanek

Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This review defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME. In this study, a systematic review of the current NSCLC 3D models that have been able to mimic the hypoxic TME is presented. The multicellular tumor spheroid, organoids, scaffolds, microfluidic devices and 3D bioprinting currently being utilized in NSCLC hypoxia studies are reviewed. Additionally, the utilization of 3D in vitro models for exploring biological and therapeutic parameters in the future is described.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hongying Zhao ◽  
Yu Wang ◽  
Xiubao Ren

Abstract Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.


2020 ◽  
Vol 59 (1) ◽  
pp. 11-20
Author(s):  
Cong Fang ◽  
Yahui Liu ◽  
Lanying Chen ◽  
Yingying Luo ◽  
Yaru Cui ◽  
...  
Keyword(s):  

Lung Cancer ◽  
1990 ◽  
Vol 6 (1-2) ◽  
pp. 63
Author(s):  
W Matthews ◽  
J Cook ◽  
JB Mitchell ◽  
RR Perry ◽  
S Evans ◽  
...  

2021 ◽  
Author(s):  
Dan Wang ◽  
Tianshou Cao ◽  
Wanyu Li ◽  
Li Li ◽  
Qunfa Huang ◽  
...  

Abstract Small cell lung cancer (SCLC) accounts for 13% ~ 15% of lung cancer. It is a subtype with high malignancy and poor prognosis. Almost all patients with SCLC will inevitably have drug resistance and tumor recurrence, which has become an urgent problem in the treatment of SCLC. Nuclear-targeted drug delivery system, which enables intra-nuclear release of anticancer drugs, is expected to address this challenge. In this study, based on transactivator of transcription (TAT)’s active transport property to the nucleus, we developed a high-efficiency nucleus-targeted co-delivery vector that delivers genes and drugs directly into the nucleus of A549 cells. The system is based on a poly-(N-ε-carbobenzyloxy-L-lysine) (PZLL) and dendritic polyamidoamine (PAMAM) block copolymer (PZLL-D3) with TAT modified on the surface of carrier. In vitro studies showed that DOX and p53 could can be effectively transported to the nucleus and kill the cancer cells. Thus, such deliver system would bypass the drug resistance and tumor recurrence problem.


Sign in / Sign up

Export Citation Format

Share Document