scholarly journals Berberine reduces temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Huiling Qu ◽  
Xiaofu Song ◽  
Zhuyin Song ◽  
Xin Jiang ◽  
Xin Gao ◽  
...  

Abstract Background The ability to treat glioblastoma (GBM) using the chemotherapeutic agent temozolomide (TMZ) has been hampered by the development of therapeutic resistance. In this study, we assessed the ability of the isoquinoline alkaloid berberine to alter GBM TMZ resistance using two different TMZ-resistant cell lines to mimic a physiologically relevant GBM experimental system. Methods By treating these resistant cell lines with berberine followed by TMZ, we were able to assess the chemosensitivity of these cells and their parental strains, based on their performance in the MTT and colony formation assays, as well as on the degree of detectable apoptosis that was detected in the strains. Furthermore, we used Western blotting to assess autophagic responses in these cell lines, and we extended this work into a xenograft mouse model to assess the in vivo efficacy of berberine. Results Through these experiments, our findings indicated that berberine enhanced autophagy and apoptosis in TMZ-resistant cells upon TMZ treatment in a manner that was linked with ERK1/2 signaling. Similarly, when used in vivo, berberine increased GBM sensitivity to TMZ through ERK1/2 signaling pathways. Conclusions These findings demonstrate that berberine is an effective method of increasing the sensitization of GBM cells to TMZ treatment in a manner that is dependent upon the ERK1/2-mediated induction of autophagy, thus making berberine a potentially viable therapeutic agent for GBM treatment.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1262-1262
Author(s):  
Tristan Knight ◽  
Xinan Qiao ◽  
Jun Ma ◽  
Holly Edwards ◽  
Lisa Polin ◽  
...  

Introduction FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutations are found in approximately one quarter of acute myeloid leukemia (AML) cases. Its presence results in constitutive activation of the FLT3 receptor tyrosine kinase and its downstream growth/pro-survival pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT, and confers a poor prognosis. Gilteritinib is a selective inhibitor of FLT3 recently approved by the Food and Drug Administration for treatment of patients with relapsed/refractory AML and a FLT3 mutation. However, gilteritinib exposure induces upregulation of FLT3 - a mechanism of resistance. Previously, we showed that CUDC-907, a dual PI3K/histone deacetylase inhibitor, downregulates FLT3 expression (Li X, et al. Haematologica. 2019; epub ahead of print). We therefore hypothesized that combining CUDC-907 with gilteritinib would abrogate FLT3 upregulation and expression, resulting in synergistic antileukemic activities against FLT3-mutated AML. Methods FLT3-ITD AML cell lines and primary patient samples were treated with gilteritinib or CUDC-907, alone or in combination at clinically achievable concentrations, and subjected to annexin V/propidium iodide staining and flow cytometry analysis to quantify apoptosis. Protein levels of FLT3, Bcl-2 family proteins, and key components of the MAPK/ERK, PI3K/AKT, and JAK/STAT pathways were examined using western blotting. The impact of the observed alterations upon apoptosis were confirmed via overexpression, knockdown, and targeted inhibitor experiments. Real-time RT-PCR was used to determine FLT3 transcript levels. The FLT3-ITD AML cell line MV4-11 was used to generate a xenograft mouse model to assess in vivo efficacy of the two agents. Results CUDC-907 and gilteritinib demonstrated potent synergistic antileukemic effects in FLT3-ITD AML cell lines in vitro and patient samples ex vivo, with combined therapy. CUDC-907 abolished gilteritinib-induced expression of FLT3 in both cell lines and primary patient samples. Gilteritinib treatment reduced p-AKT, p-S6, and p-STAT5 and increased p-ERK, while CUDC-907 reduced p-AKT and p-ERK, and upregulated p-STAT5. The combination of gilteritinib and CUDC-907 decreased not only p-AKT and p-S6, but also p-ERK and p-STAT5. Targeted inhibition of ERK and JAK2/STAT5 signaling by SCH772984 and AZD1480, respectively, confirmed their roles in resistance to gilteritinib and CUDC-907 monotherapies, respectively. Combined gilteritinib and CUDC-907 treatment reduced expression of the anti-apoptotic BCL-2 family member Mcl-1 and increased expression of the pro-apoptotic protein Bim. MCL-1 overexpression and BIM knockdown partially rescued FLT3-ITD AML cells upon drug treatment, confirming their role in the antileukemic activity of combined gilteritinib and CUDC-907. To determine in vivo efficacy of the two agents, NSGS mice were injected with MV4-11 cells. Three days later, the mice were randomized into vehicle control (n=5), 40 mg/kg gilteritinib (oral gavage; n=5), 100 mg/kg CUDC-907 (oral gavage; n=5) or combination (40 mg/kg gilteritinib + 100 mg/kg CUDC-907; n=6) groups. CUDC-907 was given daily for 5 days on, 2 days off, for a total of 4 cycles. Gilteritinib was administered daily for 28 days. Both agents were well tolerated; maximal weight loss was 5.5%, 0.9%, and 6.7% in the CUDC-907, gilteritinib, and combination groups, respectively. Median survival of mice in the vehicle control group was 43 days. Median survival in the CUDC-907 monotherapy and gilteritinib monotherapy arm was 40.5 days and 104 days, respectively. One mouse in the combination therapy arm died on day 138, while the remaining 5 mice in the combination therapy arm continue to survive, as of time of writing (day 168), and are asymptomatic (Figure 1). Conclusion We confirmed that the combination of CUDC-907 plus gilteritinib synergistically induces apoptosis in both FLT3-ITD AML cell lines and primary patient samples, and that gilteritinib-induced FLT3 expression is abolished by CUDC-907. Cooperative inhibition of the PI3K-AKT, JAK-STAT, and RAS-RAF pathways, as well as upregulation of Bim/downregulation of Mcl-1 all appear to contribute to this observed antileukemic synergy. Our cell line-derived xenograft mouse model provides strong evidence of in vivo efficacy and robust grounds for clinical translation of this therapeutic combination. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 44 (25) ◽  
pp. 4416-4430 ◽  
Author(s):  
Bruce G. Szczepankiewicz ◽  
Gang Liu ◽  
Hwan-Soo Jae ◽  
Andrew S. Tasker ◽  
Indrani W. Gunawardana ◽  
...  

2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3460
Author(s):  
Mayura Meerang ◽  
Jessica Kreienbühl ◽  
Vanessa Orlowski ◽  
Seraina L. C. Müller ◽  
Michaela B. Kirschner ◽  
...  

Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Huanyu He ◽  
Xinmao Song ◽  
Zuozhang Yang ◽  
Yuchi Mao ◽  
Kunming Zhang ◽  
...  

Abstract Stereotactic body radiotherapy (SBRT) has emerged as a standard treatment for non-small-cell lung cancer. However, its therapeutic advantages are limited with the development of SBRT resistance. The SBRT-resistant cell lines (A549/IR and H1975/IR) were established after exposure with hypofractionated irradiation. The differential lncRNAs were screened by microarray assay, then the expression was detected in LUAD tumor tissues and cell lines by qPCR. The influence on radiation response was assessed via in vitro and in vivo assays, and autophagy levels were evaluated by western blot and transmission electron microscopy. Bioinformatics prediction and rescue experiments were used to identify the pathways underlying SBRT resistance. High expression of KCNQ1OT1 was identified in LUAD SBRT-resistant cells and tissues, positively associated with a large tumor, advanced clinical stage, and a lower response rate to concurrent therapy. KCNQ1OT1 depletion significantly resensitized A549/IR and H1975/IR cells to radiation by inhibiting autophagy, which could be attenuated by miR-372-3p knockdown. Furthermore, autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) were confirmed as direct targets of miR-372-3p. Restoration of either ATG5 or ATG12 abrogated miR-372-3p-mediated autophagy inhibition and radiosensitivity. Our data describe that KCNQ1OT1 is responsible for SBRT resistance in LUAD through induction of ATG5- and ATG12-dependent autophagy via sponging miR-372-3p, which would be a potential strategy to enhance the antitumor effects of radiotherapy in LUAD.


2014 ◽  
Vol 275 (1-2) ◽  
pp. 219
Author(s):  
Daniel Harari ◽  
Nadine Kallweit ◽  
Renne Abramovich ◽  
Keren Sasson ◽  
Alla Zozulya ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 726-726
Author(s):  
Asahi Ito ◽  
Takashi Ishida ◽  
Atae Utsunomiya ◽  
Fumihiko Sato ◽  
Fumiko Mori ◽  
...  

Abstract Abstract 726 There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities, and it is a current crucial problem in the field of human ADCC research. To overcome this, we have established “humanized mice,” in which human immune cells from healthy individuals function as ADCC effector cells against allogeneic tumor cell lines, using NOD/Shi-scid, IL-2Rγnull (NOG) mice as recipients. In this model, the chimeric anti-CCR4 monoclonal antibody (mAb), KM2760, the Fc region of which is defucosylated to highly enhance ADCC, showed potent antitumor activity by human ADCC against CCR4 expressing tumor cell lines. In addition, KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in the tumor bearing humanized mice. These observations indicate that KM2760 could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. Using this humanized mouse model, we now have the opportunity to perform more appropriate preclinical evaluation of many types of mAb based immunotherapy, although in the initial study, we could not completely exclude nonspecific allogeneic immune responses because target and effector cells were obtained from different individuals. In addition, susceptibility to immunotherapy is likely to be different in established cell lines and primary tumor cells isolated directly ex vivo from patients, with the latter certainly being more relevant for evaluation of immunotherapeutic agents. To overcome the subsequent problems, we have established a primary human tumor bearing NOG mouse model, in which autologous human immune cells are engrafted and mediate ADCC but in which endogenous murine cells are unable to mediate ADCC. In the present study, we used NOG mice bearing primary adult T-cell leukemia/lymphoma (ATLL) cells. We report significant antitumor activity in vivo associated with robust ADCC mediated by autologous effector cells from the same patients. The present study is the first to report a mouse model in which a potent antitumor effect of the therapeutic mAb against primary tumor cells is mediated by autologous human immune cells. Human autologous ADCC in mice in vivo was confirmed by the depletion of human immune cells before ATLL PBMC inoculation. In addition, NOG mice bearing primary ATLL cells presented features identical with patients with ATLL. In conclusion, this approach makes it possible to model the human immune system active in mAb based immunotherapy in vivo, and thus to perform more appropriate preclinical evaluations of novel therapeutic mAb. Furthermore, the potent ADCC mediated by defucosylated anti-CCR4 mAb, observed here in vivo in humanized mice, will be exploited in clinical trials in the near future. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 581-581
Author(s):  
Patrick Griffin ◽  
Steffan T Nawrocki ◽  
Takashi Satou ◽  
Claudia M Espitia ◽  
Kevin R. Kelly ◽  
...  

Abstract Abstract 581 The long-term prognosis for the majority of patients diagnosed with acute myeloid leukemia (AML) is very poor due, in part, to pre-existing myelodysplasia, multidrug resistance, and co-existing morbidities that limit therapeutic options. Novel strategies are essential in order to improve clinical outcomes. TAK-901 is an investigational small molecule kinase inhibitor that is currently being evaluated in Phase I trials. In preclinical studies, TAK-901 has demonstrated significant effects against a number of kinases with important roles in cancer including the Aurora kinases, which are key regulators of mitosis and whose overexpression in cancer promotes genetic instability, malignant pathogenesis, and drug resistance. We hypothesized that simultaneously targeting the activity of the Auroras and other oncogenic kinases with TAK-901 would disrupt AML pathogenesis. In order to test our hypothesis, we investigated the efficacy and pharmacodynamic activity of TAK-901 human AML cell lines, primary AML specimens, and an orthotopic bioluminescent disseminated mouse model of AML. TAK-901 potently diminished the viability of a panel of 8 AML cell lines as well as primary cells obtained from patients with AML. Acute exposure to TAK-901 ablated clonogenic survival, triggered the accumulation of polyploid cells, and induced apoptosis. The cytostatic and cytotoxic effects of TAK-901 were associated with significantly increased expression of the cyclin-dependent kinase inhibitor p27, growth arrest and DNA-damage-inducible 45a (GADD45a), and the BH3-only pro-apoptotic protein PUMA. Chromatin immunoprecipitation (ChIP) assays revealed that the elevation in the expression of these genes caused by administration of TAK-901 was due to increased FOXO3a transcriptional activity. The in vivo anti-leukemic activity of TAK-901 was investigated in a disseminated xenograft mouse model of AML established by intravenous injection of luciferase-expressing MV4-11 cells. IVIS Xenogen imaging was utilized to monitor disease burden throughout the study. In this mouse model, administration of TAK-901 was very well-tolerated and significantly more effective than the standard of care drug cytarabine with respect to suppressing disease progression and prolonging overall survival. Analysis of specimens collected from mice demonstrated that TAK-901 inhibited the homing of AML cells to the bone marrow microenvironment and induced AML cell apoptosis in vivo. Our collective findings indicate that TAK-901 is a novel multi-targeted kinase inhibitor that has significant preclinical activity in AML models and warrants further investigation. Disclosures: Satou: Takeda Pharmaceuticals: Employment. Hasegawa:Takeda Pharmaceuticals: Employment. Romanelli:Millennium Pharmaceuticals: Employment. de Jong:Takeda San Diego: Employment. Carew:Millennium Pharmaceuticals: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1818-1818 ◽  
Author(s):  
Joel G Turner ◽  
Jana L Dawson ◽  
Christopher L Cubitt ◽  
Erkan Baluglo ◽  
Steven Grant ◽  
...  

Abstract Purpose Human multiple myeloma (MM) remains an incurable disease despite relatively effective treatments, including proteasome inhibitors, immunomodulator-based therapies, and high-dose chemotherapy with autologous stem cell rescue. New agents are needed to further improve treatment outcomes. In previous studies, we have shown that inhibitors of the nuclear export receptor XPO1, in combination with bortezomib, carfilzomib, doxorubicin, or melphalan, synergistically induced apoptosis in MM cells in vitro, in vivo and ex vivo without affecting non-myeloma cells. In early clinical trials, the oral, brain penetrating XPO1 inhibitor selinexor showed clear anti-myeloma activity however adverse events have been recorded, including nausea and anorexia. Our purpose was to investigate the use of oral KPT-8602, a novel small-molecule inhibitor of XPO1 with minimal brain penetration, which has been shown to have reduced toxicities in rodents and primates while maintaining potent anti-tumor effects. Experimental Procedures To test the efficacy of KPT-8602, we treated human MM cell lines (both parental and drug-resistant) with KPT-8602 ± currently used MM drugs, including bortezomib, carfilzomib, dexamethasone, doxorubicin, lenalidomide, melphalan, topotecan, and VP-16. Human MM cell lines assayed included RPMI-8226 (8226), NCI-H929 (H929), U266, and MM1.S, PI-resistant 8226-B25 and U266-PSR, doxorubicin-resistant 8226-Dox6 and 8226-Dox40, and melphalan-resistant 8226-LR5 and U266-LR6 cell lines. MM cells (2-4x106 cells/mL) were treated for 24 hours with KPT-8602 (300 nM), followed by treatment with one of the listed anti-MM agents for an additional 24 hours. MM cells were then assayed for cell viability (CellTiter-Blue, Promega). In addition, cells were treated with KPT-8602 ± anti-MM agents concurrently for 20 hours and assayed for apoptosis by flow cytometry. In vivo testing was done in NOD/SCID-g mice by intradermal injection of U266 MM cells. Treatment started 2 weeks after tumor challenge with KPT-8602 (10 mg/kg) ± melphalan (1 or 3 mg/kg) 2X/week (Tuesday, Friday) or with KPT-8602 alone 5X weekly (10 mg/kg) (Monday-Friday). A parallel experiment was run using the clinical XPO1 inhibitor KPT-330 (selinexor). Ex vivo testing was performed on MM cells from newly diagnosed/relapsed patient bone marrow aspirates with KPT-8602 ± bortezomib, carfilzomib, dexamethasone, doxorubicin, lenalidomide, melphalan, topotecan, or VP16. CD138+/light-chain+ cells were assayed for apoptosis by flow cytometry. Results Viability assay showed that KPT-8602 had low IC50values (~140 nM) as a single agent and functioned synergistically with bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16. (CI values < 1.0). This synergistic effect was less pronounced in myeloma cells when KPT-8602 was used in combination with dexamethasone or lenalidomide. KPT-8602 ± bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16 combination therapy also induced apoptosis in all MM cell lines tested, including drug-resistant cell lines, as shown by caspase 3 cleavage and flow cytometric analyses. NOD/SCID-gamma mouse tumor growth was reduced and survival increased in KPT-8602/melphalan-treated mice when compared to single-agent controls. In addition, mice treated with KPT-8602 5X weekly had significantly reduced tumor growth and increased survival when compared to 2X weekly drug administration. No toxicity was observed in KPT-8602-treated mice as determined by weight loss in both the 2X and 5X groups. In patient bone marrow biopsies, the combination of KPT-8602 ± bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16 was more effective than single agents at inducing apoptosis in CD138+/LC+ MM cells in both newly diagnosed and relapsed/refractory patient samples. Conclusions We found that the novel XPO1 inhibitor KPT-8602 sensitizes MM cells to bortezomib, carfilzomib, doxorubicin, melphalan, topotecan, and VP16 as shown by apoptosis in parental and drug-resistant cell lines and by cell viability assays. Sensitization was found to be synergistic. In addition, KPT-8602 was effective in treatment of human MM tumors in mice as a single agent or in combination with melphalan and was effective when combined with several MM drugs in MM cell lines and MM patient bone marrow aspirates. KPT-8602 may be a potential candidate for future clinical trials. Disclosures Shacham: Karyopharm: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document