scholarly journals Human drug efflux transporter ABCC5 confers acquired resistance to pemetrexed in breast cancer

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jihui Chen ◽  
Zhipeng Wang ◽  
Shouhong Gao ◽  
Kejin Wu ◽  
Fang Bai ◽  
...  

Abstract Aim Pemetrexed, a new generation antifolate drug, has been approved for the treatment of locally advanced or metastatic breast cancer. However, factors affecting its efficacy and resistance have not been fully elucidated yet. ATP-binding cassette (ABC) transporters are predictors of prognosis as well as of adverse effects of several xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and can contribute to the optimization of breast cancer treatment regimen. Methods First, we measured the expression levels of ABC transporter family members in cell lines. Subsequently, we assessed the potential role of ABC transporters in conferring resistance to pemetrexed in primary breast cancer cells isolated from 34 breast cancer patients and the role of ABCC5 in mediating pemetrexed transport and apoptotic pathways in MCF-7 cells. Finally, the influence of ABCC5 expression on the therapeutic effect of pemetrexed was evaluated in an in vivo xenograft mouse model of breast cancer. Results The expression levels of ABCC2, ABCC4, ABCC5, and ABCG2 significantly increased in the pan-resistant cell line, and the ABCC5 level in the MCF-7-ADR cell line was 5.21 times higher than that in the control group. ABCC5 expression was inversely correlated with pemetrexed sensitivity (IC50, r = 0.741; p < 0.001) in breast cancer cells derived from 34 patients. Furthermore, we found that the expression level of ABCC5 influenced the efflux and cytotoxicity of pemetrexed in MCF-7 cells, with IC50 values of 0.06 and 0.20 μg/mL in ABCC5 knockout and over-expression cells, respectively. In the in vivo study, we observed that ABCC5 affected the sensitivity of pemetrexed in breast tumor-bearing mice, and the tumor volume was much larger in the ABCC5-overexpressing group than in the control group when compared with their own initial volumes (2.7-fold vs. 1.3-fold). Conclusions Our results indicated that ABCC5 expression was associated with pemetrexed resistance in vitro and in vivo, and it may serve as a target or biomarker for the optimization of pemetrexed regimen in breast cancer treatment.

2021 ◽  
Author(s):  
Jihui Chen ◽  
Zhipeng Wang ◽  
Shouhong Gao ◽  
Kejin Wu ◽  
Fang Bai ◽  
...  

Abstract AimPemetrexed, a new generation antifolate drug, is approved for the treatment for locally advanced or metastatic breast cancer, but factors affecting the efficacy and resistance of it have yet to be fully explicit. ATP-binding cassette (ABC) transporters have been reported as prognostic and adverse effects predictors of many xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and may contribute to treatment regimen optimization for breast cancer.MethodsFirstly, the expression of ABC transporters family members was measured in cell lines, thereafter examined the potential role of ABC transporter in conferring resistance to pemetrexed in primary cancer cell lines isolated from 34 breast cancer patients, and then the role of ABCC5 in mediating transport of pemetrexed and apoptosis pathway in MCF-7 cell line was assessed. Finally, the functions of ABCC5 on therapeutic effect of pemetrexed was evaluated in breast cancer bearing mice.ResultsThe expressions of ABCC2, ABCC4, ABCC5 and ABCG2 were significantly increased in pan-resistance cell line, and the ABCC5, the most obvious one, was 5.21 times higher than that of the control group. The expression of ABCC5 was inversely correlated with sensitivity (IC50) of pemetrexed (r = 0.741; p<0.001) in breast cancer cells from 34 patients. Furthermore, we found that the expression of ABCC5 influenced the efflux and cytotoxicity of pemetrexed in MCF-7 cell line, and the IC50 were 0.06 μg/ml and 0.20 μg/ml in ABCC5 knock-down and over-expression cells, respectively. In in vivo study, we found ABCC5 affected the sensitivity of pemetrexed in breast cancer bearing mice, and the tumor volume was much larger in ABCC5 over-expression group than that in control group (2.7 folds vs 1.3 folds).ConclusionsOur results indicated ABCC5 expression was associated with pemetrexed resistance in vitro and in vivo, and may be a biomarker for regimen optimization of pemetrexed in breast cancer treatment.


2020 ◽  
Author(s):  
Jihui Chen ◽  
Zhipeng Wang ◽  
Shouhong Gao ◽  
Kejin Wu ◽  
Fang Bai ◽  
...  

Abstract AimPemetrexed, a new generation antifolate drug, is approved for the treatment for locally advanced or metastatic breast cancer, but factors affecting the efficacy and resistance of it have yet to be fully explicit. ATP-binding cassette transporters have been reported as prognostic and adverse effects predictors of many xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and may contribute to treatment regimen optimization for breast cancer.MethodsFirstly, the expression of ABC transporters family members was measured in cell lines, thereafter examined the potential role of ABC transporter in conferring resistance to pemetrexed in primary cancer cell lines isolated from 34 breast cancer patients, and then the role of ABCC5 in mediating transport of pemetrexed and apoptosis pathway in MCF-7 cell lines was assessed. Finally, the functions of ABCC5 on therapeutic effect of pemetrexed was evaluated in breast cancer bearing mice.ResultsThe expressions of ABCC2, ABCC4, ABCC5 and ABCG2 were significantly increased in pan-resistance cell lines, and the ABCC5, the most obvious one, was 5.21 times higher than that of the control group. The expression of ABCC5 was inversely correlated with sensitivity (IC50) of pemetrexed (r = 0.741; p<0.010) in breast cancer cell lines from 34 patients. Further, we found expression of ABCC5 influenced the efflux and cytotoxicity of pemetrexed in MCF-7 cell line, and the IC50 were 0.06 μg/ml and 0.20 μg/ml in ABCC5 knock-down and over-expression cells, respectively. In vivo study, we found ABCC5 affected sensitivity of pemetrexed in breast cancer bearing mice, and the tumor volume was much larger in ABCC5 over-expression group than that in control group (2.7 folds vs 1.2 folds).ConclusionsOur results indicated ABCC5 was associated with pemetrexed sensitivity and resistance in vitro and in vivo, and may be a biomarker for regimen optimization of pemetrexed in breast cancer treatment.


2020 ◽  
Author(s):  
Yan Lv ◽  
Chang Zhang ◽  
Xiao Jiang Li ◽  
Shan Gao ◽  
Xu Zheng ◽  
...  

AbstractBackgroundEmerging evidence has demonstrated that WISP2/CCN5 is critically involved in tumorigenesis. However, the function of WISP2/CCN5 in breast cancer carcinogenesis is largely unclear.Methodswe aim to explore the effects and potential mechanisms of WISP2/CCN5 on proliferation of breast cancer cells and carcinogenesis of breast cancer xenograft. Lentivirus vector with WISP2/CCN5shRNA was transfected into MCF-7, and breast cancer cells and xenograft were conducted. Effect of WISP2/CCN5 on growth and carcinogenesis of breast cancer cells and xenografts was evaluated by MTT assay and tumor volume. The relationship between WISP2/CCN5, Skp2 and p27Kip1 was detected in vitro and in vivo by RT-PCR at mRNA level and Western blotting at protein level.ResultsThe result of MTT assay indicated that MCF-7 cell growth viability in WISP2/CCN5 gene knockdown group was significantly higher than negative vector group(P<0.05) or control group (P<0.05). It suggested that knockdown of WISP2/CCN5 gene by shRNA lentivirus plasmid promoted proliferation of MCF-7 cells. The growth curves of breast cancer xenograft showed that xenografts in WISP2/CCN5 knockdown group grew more quickly than negative vector group(P< 0.05) or control group (P< 0.05). Subsequently, the results of RT-PCR and Western blotting revealed that WISP2/CCN5 gene knockdown led to increased Skp2 and decreased p27Kip1 at mRNA and protein levels. WISP2/CCN5 exerts its inhibition on proliferation of MCF-7 cell line and suppressive functions on growth of breast carcinoma via regulation of Skp2 and p27Kip1at mRNA and protein levels. However, WISP2/CCN5 gene knockdown resulted in loss of inhibition effect on MCF-7 and breast cancer.ConclusionsOur findings suggest that WISP2/CCN5 could be a useful therapeutic strategy for the treatment of breast cancer through targeting Skp2 and p27Kip1.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


2021 ◽  
Vol 14 (3) ◽  
pp. 254
Author(s):  
Afnan H. El-Gowily ◽  
Samah A. Loutfy ◽  
Ehab M. M. Ali ◽  
Tarek M. Mohamed ◽  
Mohammed A. Mansour

Cancer is a complex devastating disease with enormous treatment challenges, including chemo- and radiotherapeutic resistance. Combination therapy demonstrated a promising strategy to target hard-to-treat cancers and sensitize cancer cells to conventional anti-cancer drugs such as doxorubicin. This study aimed to establish molecular profiling and therapeutic efficacy assessment of chloroquine and/or tioconazole (TIC) combination with doxorubicin (DOX) as anew combination model in MCF-7 breast cancer. The drugs are tested against apoptotic/autophagic pathways and related redox status. Molecular docking revealed that chloroquine (CQ) and TIC could be potential PI3K and ATG4B pathway inhibitors. Combination therapy significantly inhibited cancer cell viability, PI3K/AkT/mTOR pathway, and tumor-supporting autophagic flux, however, induced apoptotic pathways and altered nuclear genotoxic feature. Our data revealed that the combination cocktail therapy markedly inhibited tumor proliferation marker (KI-67) and cell growth, along with the accumulation of autophagosomes and elevation of LC3-II and p62 levels indicated autophagic flux blockage and increased apoptosis. Additionally, CQ and/or TIC combination therapy with DOX exerts its activity on the redox balance of cancer cells mediated ROS-dependent apoptosis induction achieved by GPX3 suppression. Besides, Autophagy inhibition causes moderately upregulation in ATGs 5,7 redundant proteins strengthened combinations induced apoptosis, whereas inhibition of PI3K/AKT/mTOR pathway with Beclin-1 upregulation leading to cytodestructive autophagy with overcome drug resistance effectively in curing cancer. Notably, the tumor growth inhibition and various antioxidant effects were observed in vivo. These results suggest CQ and/or TIC combination with DOX could act as effective cocktail therapy targeting autophagy and PI3K/AKT/mTOR pathways in MCF-7 breast cancer cells and hence, sensitizes cancer cells to doxorubicin treatment and combat its toxicity.


2016 ◽  
Vol 38 (3) ◽  
pp. 1003-1014 ◽  
Author(s):  
Aiyu Zhu ◽  
Yan Li ◽  
Wei Song ◽  
Yumei Xu ◽  
Fang Yang ◽  
...  

Background/Aims: Androgen receptor (AR), a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC). However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL) TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT) or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC) staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC patients.


2004 ◽  
Vol 32 (3) ◽  
pp. 793-810 ◽  
Author(s):  
MA Greeve ◽  
RK Allan ◽  
JM Harvey ◽  
JM Bentel

Androgens inhibit the growth of breast cancer cells in vitro and in vivo by mechanisms that remain poorly defined. In this study, treatment of asynchronously growing MCF-7 breast cancer cells with the androgen, 5alpha-dihydrotestosterone (DHT), was shown to inhibit cell proliferation and induce moderate increases in the proportion of G1 phase cells. Consistent with targeting the G1-S phase transition, DHT pretreatment of MCF-7 cultures impeded the serum-induced progression of G1-arrested cells into S phase and reduced the kinase activities of cyclin-dependent kinase (Cdk)4 and Cdk2 to less than 50% of controls within 3 days. DHT treatment was associated with greater than twofold increases in the levels of the Cdk inhibitor, p27(Kip1), while p21(Cip1/Waf1) protein levels remained unchanged. During the first 24 h of DHT treatment, levels of Cdk4-associated p21(Cip1/Waf1) and p27(Kip1) were reduced coinciding with decreased levels of Cdk4-associated cyclin D3. In contrast, DHT treatment caused increased accumulation of Cdk2-associated p21(Cip1/Waf1), with no significant alterations in levels of p27(Kip1) bound to Cdk2 complexes. These findings suggest that DHT reverses the Cdk4-mediated titration of p21(Cip1/Waf1) and p27(Kip1) away from Cdk2 complexes, and that the increased association of p21(Cip1/Waf1) with Cdk2 complexes in part mediates the androgen-induced growth inhibition of breast cancer cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
S. H. Shahruzaman ◽  
M. F. Mustafa ◽  
S. Ramli ◽  
S. Maniam ◽  
S. Fakurazi ◽  
...  

Breast cancer is the leading cause of cancer death in women in over 100 countries worldwide and accounts for almost 1 in 4 cancer cases among women. Baeckea frutescens of the family Myrtaceae has been used in traditional medicine and is known to possess antibacterial, antipyretic, and cytoprotective properties. In this study, we investigated the role of Baeckea frutescens branches extracts against human breast cancer cells. Baeckea frutescens branches extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxic activity and the glucose consumption rate of Baeckea frutescens branches extracts of various concentrations (20 to 160 ug/ml) at 24-, 48-, and 72-hour time points were studied using MTT and glucose uptake assay. The IC50 values in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscopy. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening of major secondary metabolites in plants was performed. This study reports that Baeckea frutescens branches extracts showed potent selective cytotoxic activity against MCF-7 cells compared to MDA-MB-231 cells after 72 hours of treatment. Evidence of early apoptosis which includes membrane blebbing and chromatin condensation was observed after 72 hours of treatment with Baeckea frutescens branches extracts. Interestingly, for the glucose uptake assay, the inhibition was observed as early as 24 hours upon treatment. All Baeckea frutescens extracts showed the presence of major secondary metabolites such as tannin, triterpenoid, flavonoid, and phenol. However, alkaloid level was unable to be determined. The identification of Baeckea frutescens and its possible role in selectively inhibiting glucose consumption in breast cancer cells defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


Sign in / Sign up

Export Citation Format

Share Document