scholarly journals Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xi Yang ◽  
Ling Gao ◽  
Yuanfeng Wei ◽  
Bowen Tan ◽  
Yongzhi Wu ◽  
...  

Abstract Background As one of the leading threats for health among women worldwide, breast cancer has high morbidity and mortality. Surgical resection is the major clinical intervention for primary breast tumor, nevertheless high local recurrence risk and breast tissue defect remain two main clinical dilemmas, seriously affecting survival and quality of life of patients. Experimental We developed a thermoresponsive and injectable hybrid hydrogel platform (IR820/Mgel) by integration of co-loaded porous microspheres (MPs) and IR820 for preventing postoperative recurrence of breast cancer via photothermal therapy and promoting subsequent breast reconstruction. Results Our results suggested that IR820/Mgel could quickly heated to more than 50.0 ℃ under NIR irradiation, enabling killing effect on 4T1 cells in vitro and prevention effect on post-surgical tumor recurrence in vivo. In addition, the hydrogel platform was promising for its minimal invasion and capability of filling irregularly shaped defects after surgery, and the encapsulated MPs could help to increase the strength of gel to realize a long-term in situ function in vivo, and promoted the attachment and anchorage property of normal breast cells and adipose stem cells. Conclusions This photothermal hydrogel platform provides a practice paradigm for preventing locally recurrence of breast cancer and a potential option for reconstruction of breast defects. Graphic abstract

2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Jun Liu ◽  
Feng Xu ◽  
Jie Li ◽  
Hongchuan Jiang

Abstract Objectives: The high mortality of breast cancer (BC) is associated with the strong metastatic properties of primary breast tumor cells. The present study was conducted in order to clarify the effect of Cosmc on the growth and metastasis of BC cell lines of different molecular types, which may be implicated in the regulation of Tn and T glycans. Methods: BC cell lines with different molecular types were transduced with shRNA targeting Cosmc or, Cosmc overexpression plasmid in order to explore the role of Cosmc in cell proliferation, migration, invasion, and apoptosis. The protein levels of Tn, T, Cosmc, proliferation-related factors (Ki67 and PCNA) and apoptosis-related factors (Bax and Bad) in BC cell lines were determined by Western blot analyses. Finally, the role of Cosmc was substantiated through in vivo experiments. Results: Cosmc was down-regulated in different subtypes of BC cell lines compared with normal control cells. Overexpression of Cosmc suppressed the proliferation, migration, and invasion, yet promoted the apoptosis of BC cells, as reflected by in vitro experiments. Additionally, in vivo tumor xenografts in nude mice showed that ectopic overexpression of Cosmc inhibited the tumor growth of BC cells. Consequently, the levels of proliferation-related factors and Tn antigen were decreased, while those of apoptosis-related factors and T antigen were increased in BC cells. This observation was confirmed in vivo in xenograft tumors. Conclusion: Collectively, up-regulation of Cosmc potentially impedes BC growth and metastasis by modulating the balance between Tn and T glycans.


2017 ◽  
Vol 11 ◽  
pp. 117822341772677 ◽  
Author(s):  
Niamh O’Halloran ◽  
Donald Courtney ◽  
Michael J Kerin ◽  
Aoife J Lowery

Adipose-derived stem cells (ADSCs) are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
S. Bekaert ◽  
N. Rocks ◽  
C. Vanwinge ◽  
A. Noel ◽  
D. Cataldo

Abstract Background Mechanisms that preclude lung metastasis are still barely understood. The possible consequences of allergic airways inflammation on cancer dissemination were studied in a mouse model of breast cancer. Methods Balb/c mice were immunized and daily exposed to ovalbumin (OVA) from day 21. They were subcutaneously injected with 4T1 mammary tumor cells on day 45 and sacrificed on day 67. Lung metastases were measured by biophotonic imaging (IVIS® 200 Imaging System) and histological measurement of tumor area (Cytomine software). Effects of CCL11 were assessed in vivo by intratracheal instillations of recCCL11 and in vitro using Boyden chambers. CCR3 expression on cell surface was assessed by flow cytometry. Results The extent of tumor metastases was significantly higher in lungs of OVA-exposed mice and increased levels of CCL11 expression were measured after OVA exposure. Migration of 4T1 cells and neutrophils was stimulated in vitro and in vivo by recCCL11. 4T1 cells and neutrophils express CCR3 as shown by flow cytometry and a selective CCR3 antagonist (SB-297006) inhibited the induction of 4T1 cells migration and proliferation in response to recCCL11. Conclusions Allergic inflammation generated by exposure to allergens triggers the implantation of metastatic cells from primary breast tumor into lung tissues plausibly in a CCL11–CCR3-dependent manner. This indicates that asthma related inflammation in lungs might be a risk factor for lung metastasis in breast cancer patients.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

2019 ◽  
Vol 25 (36) ◽  
pp. 3872-3880 ◽  
Author(s):  
Marcel M. Bergmann ◽  
Jean-Christoph Caubet

Severe cutaneous adverse reactions (SCAR) are life-threatening conditions including acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Diagnosis of causative underlying drug hypersensitivity (DH) is mandatory due to the high morbidity and mortality upon re-exposure with the incriminated drug. If an underlying DH is suspected, in vivo test, including patch tests (PTs), delayed-reading intradermal tests (IDTs) and in vitro tests can be performed in selected patients for which the suspected culprit drug is mandatory, or in order to find a safe alternative treatment. Positivity of in vivo and in vitro tests in SCAR to drug varies depending on the type of reaction and the incriminated drugs. Due to the severe nature of these reactions, drug provocation test (DPT) is highly contraindicated in patients who experienced SCAR. Thus, sensitivity is based on positive test results in patients with a suggestive clinical history. Patch tests still remain the first-line diagnostic tests in the majority of patients with SCAR, followed, in case of negative results, by delayed-reading IDTs, with the exception of patients with bullous diseases where IDTs are still contra-indicated. In vitro tests have shown promising results in the diagnosis of SCAR to drug. Positivity is particularly high when the lymphocyte transformation test (LTT) is combined with cytokines and cytotoxic markers measurement (cyto-LTT), but this still has to be confirmed with larger studies. Due to the rarity of SCAR, large multi-center collaborative studies are needed to better study the sensitivity and specificity of in vivo and in vitro tests.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


Sign in / Sign up

Export Citation Format

Share Document