scholarly journals Identification of key lncRNAs in colorectal cancer progression based on associated protein–protein interaction analysis

2017 ◽  
Vol 15 (1) ◽  
Author(s):  
Haishan Zhu ◽  
Jiajing Yu ◽  
Haifeng Zhu ◽  
Yusheng Guo ◽  
Shengjie Feng
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhao‑liang Yu ◽  
Yu‑feng Chen ◽  
Bin Zheng ◽  
Ze-rong Cai ◽  
Yi‑feng Zou ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Jiang ◽  
Tao Huang ◽  
Lei Chen ◽  
Yu-Fei Gao ◽  
Yudong Cai ◽  
...  

Colorectal cancer is generally categorized into the following four stages according to its development or serious degree: Dukes A, B, C, and D. Since different stage of colorectal cancer actually corresponds to different activated region of the network, the transition of different network states may reflect its pathological changes. In view of this, we compared the gene expressions among the colorectal cancer patients in the aforementioned four stages and obtained the early and late stage biomarkers, respectively. Subsequently, the two kinds of biomarkers were both mapped onto the protein interaction network. If an early biomarker and a late biomarker were close in the network and also if their expression levels were correlated in the Dukes B and C patients, then a signal propagation path from the early stage biomarker to the late one was identified. Many transition genes in the signal propagation paths were involved with the signal transduction, cell communication, and cellular process regulation. Some transition hubs were known as colorectal cancer genes. The findings reported here may provide useful insights for revealing the mechanism of colorectal cancer progression at the cellular systems biology level.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fangfang Yang ◽  
Hua Wang ◽  
Bianbian Yan ◽  
Tong Li ◽  
Lulu Min ◽  
...  

Abstract The molecular pathogenesis of colorectal cancer (CRC) has been widely investigated in recent years. Accumulating evidence has indicated that microRNA (miRNA) dysregulation participates in the processes of driving CRC initiation and progression. Aberrant expression of miR-1301 has been found in various tumor types. However, its role in CRC remains to be elucidated. In the present study, we identified miR-1301 was enriched in normal colorectal tissues and significantly down-regulated in CRC. Decreased level of miR-1301 strongly correlated with aggressive pathological characteristics, including advanced stage and metastasis. Bioinformatics and dual luciferase assay demonstrated that STAT3 is a direct target of miR-1301. Gain and loss-of-function assays showed that miR-1301 had no effect on cell proliferation. Overexpression of miR-1301 suppressed cell migration and invasion capacity of pSTA3-positive LoVo cells, but not pSTAT3-negative SW480 cells, while inhibition of miR-1301 consistently promoted cell migration and invasion in both cell lines. Additionally, miR-1301 inhibition restored the suppressed migration and invasion of STAT3- knockdown LoVo cells. MiR-1301 functioned as a tumor suppressor to modulate the IL6/STAT3 signaling pathway. In summary, this study highlights the significant role of miR- 1301/STAT3 axis in CRC metastasis.


Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Yichao Hou ◽  
Xiaoling Weng ◽  
Wenjing Pang ◽  
Lidan Hou ◽  
...  

AbstractExploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis–mediated aerobic glycolysis pathway.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Francisca Dias ◽  
Cristina Almeida ◽  
Ana Luísa Teixeira ◽  
Mariana Morais ◽  
Rui Medeiros

The development and progression of colorectal cancer (CRC) have been associated with genetic and epigenetic alterations and more recently with changes in cell metabolism. Amino acid transporters are key players in tumor development, and it is described that tumor cells upregulate some AA transporters in order to support the increased amino acid (AA) intake to sustain the tumor additional needs for tumor growth and proliferation through the activation of several signaling pathways. LAT1 and ASCT2 are two AA transporters involved in the regulation of the mTOR pathway that has been reported as upregulated in CRC. Some attempts have been made in order to develop therapeutic approaches to target these AA transporters, however none have reached the clinical setting so far. MiRNA-based therapies have been gaining increasing attention from pharmaceutical companies and now several miRNA-based drugs are currently in clinical trials with promising results. In this review we combine a bioinformatic approach with a literature review in order to identify a miRNA profile with the potential to target both LAT1 and ASCT2 with potential to be used as a therapeutic approach against CRC.


Sign in / Sign up

Export Citation Format

Share Document