scholarly journals Tumor cell-imposed iron restriction drives immunosuppressive polarization of tumor-associated macrophages

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jia-Lei Sun ◽  
Ning-Ping Zhang ◽  
Ru-Chen Xu ◽  
Guang-Cong Zhang ◽  
Zhi-Yong Liu ◽  
...  

Abstract Background Tumor-associated macrophages (TAM) are immunosuppressive cells that contribute to impaired anti-cancer immunity. Iron plays a critical role in regulating macrophage function. However, it is still elusive whether it can drive the functional polarization of macrophages in the context of cancer and how tumor cells affect the iron-handing properties of TAM. In this study, using hepatocellular carcinoma (HCC) as a study model, we aimed to explore the effect and mechanism of reduced ferrous iron in TAM. Methods TAM from HCC patients and mouse HCC tissues were collected to analyze the level of ferrous iron. Quantitative real-time PCR was used to assess M1 or M2 signature genes of macrophages treated with iron chelators. A co-culture system was established to explore the iron competition between macrophages and HCC cells. Flow cytometry analysis was performed to determine the holo-transferrin uptake of macrophages. HCC samples from The Cancer Genome Atlas (TCGA) were enrolled to evaluate the prognostic value of transferrin receptor (TFRC) and its relevance to tumor-infiltrating M2 macrophages. Results We revealed that ferrous iron in M2-like TAM is lower than that in M1-like TAM. In vitro analysis showed that loss of iron-induced immunosuppressive M2 polarization of mouse macrophages. Further experiments showed that TFRC, the primary receptor for transferrin-mediated iron uptake, was overexpressed on HCC cells but not TAM. Mechanistically, HCC cells competed with macrophages for iron to upregulate the expression of M2-related genes via induction of HIF-1α, thus contributing to M2-like TAM polarization. We further clarified the oncogenic role of TFRC in HCC patients by TCGA. TFRC is significantly increased in varieties of malignancies, including HCC, and HCC patients with high TFRC levels have considerably shortened overall survival. Also, TFRC is shown to be positively related to tumor-infiltrating M2 macrophages. Conclusions Collectively, we identified iron starvation through TFRC-mediated iron competition drives functional immunosuppressive polarization of TAM, providing new insight into the interconnection between iron metabolism and tumor immunity.

2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


2019 ◽  
Vol 133 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Jing Chen ◽  
Di Wu ◽  
Yue Zhang ◽  
Yong Yang ◽  
Yunfei Duan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important roles in a variety of tumours; however, their biological function and clinical significance in hepatocellular carcinoma (HCC) are still unclear. In the present study, the clinical significance, biological function and regulatory mechanisms of lncRNA DCST1-AS1 in HCC were investigated. Differential lncRNAs in HCC were identified based on The Cancer Genome Atlas (TCGA) database. The biological function and mechanism of DCST1-AS1 were studied in vitro and in vivo. LncRNA DCST1-AS1 was highly expressed in HCC tissues, and the high expression of DCST1-AS1 was significantly correlated with larger tumours and shorter survival time. Moreover, DCST1-AS1 knockout significantly inhibited proliferation, promoted apoptosis and cycle arrest of HCC cells, and inhibited tumour growth in vivo. According to functional analysis, DCST1-AS1 competitively bound miR-1254, thus blocking the silencing effect of miR-1254 on the target gene Fas apoptosis inhibitor 2 (FAIM2). A novel lncRNA DCST1-AS1 that functions as an oncogene in HCC was discovered. DCST1-AS1 up-regulates the expression of FAIM2 by up-regulating the expression of miR-1254, ultimately promoting the proliferation of HCC cells. This research provides new therapeutic targets for HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lian Liu ◽  
Jia-Qi Sheng ◽  
Mu-Ru Wang ◽  
Yun Gan ◽  
Xiao-Li Wu ◽  
...  

Primary cilia are organelles protruding from cell surface into environment that function in regulating cell cycle and modulating cilia-related signal. Primary ciliogenesis and autophagy play important roles in tumorigenesis. However, the functions and interactions between primary cilia and autophagy in hepatocellular carcinoma (HCC) have not been reported yet. Here, we aimed to investigate the relationship and function of primary cilia and autophagy in HCC. In vitro, we showed that serum starvation stimuli could trigger primary ciliogenesis in HCC cells. Blockage of primary ciliogenesis by IFT88 silencing enhanced the proliferation, migration, and invasion ability of HCC cells. In addition, inhibition of primary cilia could positively regulate autophagy. However, the proliferation, migration, and invasion ability which were promoted by IFT88 silencing could be partly reversed by inhibition of autophagy. In vivo, interference of primary cilia led to acceleration of tumor growth and increase of autophagic flux in xenograft HCC mouse models. Moreover, IFT88 high expression or ATG7 low expression in HCC tissues was correlated with longer survival time indicated by the Cancer Genome Atlas (TCGA) analysis. In conclusion, our study demonstrated that blockage of primary ciliogenesis by IFT88 silencing had protumor effects through induction of autophagy in HCC. These findings define a newly recognized role of primary cilia and autophagy in HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hui Yuan ◽  
Zelong Lin ◽  
Yingjun Liu ◽  
Yuchuan Jiang ◽  
Ke Liu ◽  
...  

Abstract Background M2-polarized tumor-associated macrophages (M2-TAMs) have been shown to correlate with the progression of various cancers, including intrahepatic cholangiocarcinoma (ICC). However, the interactions and mechanism between M2 macrophages and ICC are not completely clear. We aimed to clarify whether M2 macrophages promote the malignancy of ICC and its mechanism. Methods Two progressive murine models of ICC were used to evaluate the alterations in different macrophage populations and phenotypes. Furthermore, we assessed M2 macrophage infiltration in 48 human ICC and 15 normal liver samples. The protumor functions and the underlying molecular mechanisms of M2 macrophages in ICC were investigated in an in vitro coculture system. Results We found that the number of M2 macrophages was significantly higher in ICC tissues than in normal bile ducts in the two murine models. M2 macrophage infiltration was highly increased in peritumoral compared with intratumoral regions and normal liver (p < 0.01). ICC cells induced macrophages to differentiate into the M2-TAM phenotype, and coculture with these M2 macrophages promoted ICC cell proliferation, invasion and epithelial–mesenchymal transition (EMT) in vitro. Mechanistically, M2-TAM-derived IL-10 promoted the malignant properties of ICC cells through STAT3 signaling. Furthermore, blockade of IL-10/STAT3 signaling partly rescued the effects of M2 macrophages on ICC. Conclusion Our results indicated that M2-polarized macrophages induced by ICC promote tumor growth and invasiveness through IL-10/STAT3-induced EMT and might be a potential therapeutic target for ICC.


2020 ◽  
Author(s):  
Mingxin Cao ◽  
Weilong Zhang ◽  
Xianghua Yu ◽  
Jiashun Wu ◽  
Xinwei Qiao ◽  
...  

Abstract Background: Human papillomavirus (HPV)-positive oral squamous cell carcinoma (OSCC) is increasing worldwide with typically higher grade and stage. Studies suggested that microRNAs (miRNAs) play a critical role in cancer; However, their role in HPV-positive OSCC progression remains unclear.Methods: miRNA microarray was performed to identify differentially expressed miRNAs. qRT-PCR and FISH were performed to determine the relative expression of miR-550a-3-5p. CCK-8, Flow cytometry, Wound healing, Cell invasion assays and xenograft experiments were conducted to analyze the biological roles of miR-550a-3-5p. Tumor-associated macrophages (TAMs) generation, co-culturing of cancer cells with TAMs, Western blot, Dual-luciferase reporter gene assay, Immunohistochemistry and animal studies were performed to explore the mechanisms underlying the functions of miR-550a-3-5p. Results: In this study, we identified 19 miRNAs differentially expressed in HPV-positive OSCC specimens. One of these, miR-550a-3-5p, was down-regulated in HPV-positive OSCC. This down-regulation correlated with higher tumor size and nodal metastasis. Biofunctional investigations revealed that miR-550a-3-5p inhibited tumor growth and progression in nude mice models without altering the in vitro migration, invasion and EMT of HPV-positive OSCC cells. After co-culturing cancer cells with tumor-associated macrophages (TAMs), we found that the effects of miR-550a-3-5p on suppressing migration, invasion and EMT of HPV-positive OSCC cells were dependent on decreasing M2 macrophages polarization. Moreover, we identified that miR-550a-3-5p, down-regulated by E6 oncoprotein, inhibited M2 macrophages polarization by YAP/CCL2 signaling, which in turn abrogating EMT program in HPV-positive OSCC cells. Using YAP inhibitor, verteporfin (VP) in a HPV-positive OSCC model of transgenic mice also showed that tumors were less progressive when compared to those in Vehicle group. In both xenografts and clinical HPV-positive OSCC samples, miR-550a-3-5p levels were inversely associated with YAP, CCL2 expressions and the number of M2 macrophages.Conclusions: E6/miR-550a-3-5p/YAP/CCL2 signaling induces M2 macrophages polarization to enhance EMT and progression, revealing a novel crosstalk between cancer cells and immune cells in HPV-positive OSCC microenvironment.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Wenbiao Chen ◽  
Donge Tang ◽  
Dongxin Tang ◽  
Yong Dai

Abstract Inactivation of tumor suppressor gene played critical roles in the development and progression of human hepatocellular carcinoma (HCC). Zic family member 4 (ZIC4) is transcription factor and plays an important role in the developmental process. However, the expression and biological role of ZIC4 in HCC is poorly understood. Here, bioinformatics analysis based on The Cancer Genome Atlas (TCGA) database revealed an aberrant hypermethylation of ZIC4 in HCC. ZIC4 is frequently hypermethylated in promoter region and down expressed in HCC cells and tissues. Functionally, ZIC4 inhibition facilitated the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Conversely, ZIC4 overexpression reduced proliferation and invasiveness of HCC cells. In addition, ZIC4 inhibition rescued the antitumor effect induced by enhancer of zeste homolog 2 (EZH2) knockdown or EZH2 inhibitor. Mechanistically, EZH2 knockdown or EZH2 inhibitor reduced the enrichment of EZH2 and H3K27me3 in ZIC4 promoter region and leading to the upregulation of ZIC4. Altogether, these data indicate that epigenetic silencing of ZIC4 by EZH2 mediated H3K27me3 is an important mechanism in HCC and provide a new therapeutic target for the treatment of hepatocellular carcinoma disease.


2018 ◽  
Author(s):  
Hua Tan ◽  
Shan Huang ◽  
Zhigang Zhang ◽  
Xiaohua Qian ◽  
Peiqing Sun ◽  
...  

ABSTRACTWhile microRNAs (miRNAs) were widely considered to repress target genes at mRNA and/or protein levels, emerging evidence from in vitro experiments has shown that miRNAs can also activate gene expression in particular contexts. However, this counterintuitive observation has rarely been reported or interpreted in in vivo conditions. We systematically explored the positive correlation between miRNA and gene expressions and its potential implications in tumorigenesis, based on 8375 patient samples across 31 major human cancers from The Cancer Genome Atlas (TCGA). Results indicated that positive miRNA-gene correlations are surprisingly prevalent and consistent across cancer types, and show distinct patterns than negative correlations. The top-ranked positive correlations are significantly involved in the immune cell differentiation and cell membrane signaling related processes, and display strong power in stratifying patients in terms of survival rate, demonstrating their promising clinical relevance. Although intragenic miRNAs generally tend to co-express with their host genes, a substantial portion of miRNAs shows no obvious correlation with their host gene due to non-conservation. A miRNA can upregulate a gene by inhibiting its upstream suppressor, or shares transcription factors with that gene, both leading to positive correlation. The miRNA/gene sites associated with the top-ranked positive correlations are more likely to form super-enhancers compared to randomly chosen pairs, suggesting a potential epigenetics mechanism underlying the upregulation. Wet-lab experiments revealed that positive correlations partially remain in the in vitro condition. Our study provides the field with new perspectives on the critical role of miRNA in gene regulation and novel insights regarding the complex mechanisms underlying miRNA functions, and reveals the clinical significance of the potential positive regulation of gene expression by miRNA.


2020 ◽  
Vol 401 (9) ◽  
pp. 1053-1061 ◽  
Author(s):  
Chunyan Zhang ◽  
Hongkai Lian ◽  
Linsen Xie ◽  
Ningwei Yin ◽  
Yuanbo Cui

AbstractAccumulating studies highlight the critical role of long non-coding RNAs (lncRNAs) in the development of various human cancers. Extracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) was shown to be a newly found lncRNA that abnormally expressed in human tumors. However, till now the specific function of this lncRNA in esophageal cancer (ESCA) remains unknown. In this study, we discovered that higher ELFN1-AS1 expression indicated shorter patient survival in pan-cancer, including ESCA, using online The Cancer Genome Atlas (TCGA) tools. The lncRNA ELFN1-AS1 was significantly up-regulated in ESCA tissues and cell lines when compared with the counterparts. Down-regulation of ELFN1-AS1 restrained cell proliferation, migration, and invasion of ESCA in vitro. In addition, we found that the expression of microRNA-183-3p (miR-183-3p) and ELFN1-AS1 or glutamine-fructose-6-phosphate transaminase 1 (GFPT1) were inversely correlated in ESCA. Both ELFN1-AS1 and GFPT1 are direct targets of miR-183-3p in ESCA. The effects of ELFN1-AS1 knockdown on ESCA progression were partially rescued by inhibition of miR-183-3p or over-expression of GFPT1. In summary, the results of this study suggest that the lncRNA ELFN1-AS1 facilitates the progression of ESCA by acting as a competing endogenous RNA (ceRNA) to promote GFPT1 expression via sponging miR-183-3p.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 9
Author(s):  
Janna Ehlert ◽  
Arne Alder ◽  
Viola Introini ◽  
Julia Weder ◽  
Pietro Cicuta ◽  
...  

Malaria remains a devastating disease with nearly half a million deaths per year. The WHO reports a stagnating number of new infections every year without a significant decline, as a result of insufficient access to antimalarials in endemic regions as well as complex resistance mechanisms of the parasites against current treatments. Due to its critical role during the parasite’s life cycle, the invasion motor myosin A is a promising target, which has not yet been considered in drug discovery. Myosins appeared to be undruggable since they are ubiquitously expressed and involved in a wide range of cellular processes. In total, the protein superfamily of myosins comprises 35 known subclasses. However, recent studies highlighted the possibility to modulate the myosin motor activity of specific myosin isoforms and classes using small allosteric effector molecules. Exploiting the concept of reversible covalent binding, we show the development of highly potent and specific inhibitors of the key motor myosin A of the glideosome—a sophisticated motor machinery involved in parasite motility and host cell invasion. Combining chemical synthesis with biophysical in vitro analysis confirmed the preferential inhibition of the target protein in the submicromolar range. The developed compounds show significant antiparasitic activities and block efficiently glideosome-associated processes, parasite proliferation, and parasitemia of the malaria parasites. Our findings demonstrate the high potential of our approach using reversible covalent binding to develop new allosteric inhibitors, targeting specifically the key invasion motor as a novel drug target to treat infections caused by malaria parasites.


Sign in / Sign up

Export Citation Format

Share Document