scholarly journals Interplay between cancer cells and M2 macrophages is necessary for miR-550a-3-5p down-regulation-mediated HPV-positive OSCC progression

2020 ◽  
Author(s):  
Mingxin Cao ◽  
Weilong Zhang ◽  
Xianghua Yu ◽  
Jiashun Wu ◽  
Xinwei Qiao ◽  
...  

Abstract Background: Human papillomavirus (HPV)-positive oral squamous cell carcinoma (OSCC) is increasing worldwide with typically higher grade and stage. Studies suggested that microRNAs (miRNAs) play a critical role in cancer; However, their role in HPV-positive OSCC progression remains unclear.Methods: miRNA microarray was performed to identify differentially expressed miRNAs. qRT-PCR and FISH were performed to determine the relative expression of miR-550a-3-5p. CCK-8, Flow cytometry, Wound healing, Cell invasion assays and xenograft experiments were conducted to analyze the biological roles of miR-550a-3-5p. Tumor-associated macrophages (TAMs) generation, co-culturing of cancer cells with TAMs, Western blot, Dual-luciferase reporter gene assay, Immunohistochemistry and animal studies were performed to explore the mechanisms underlying the functions of miR-550a-3-5p. Results: In this study, we identified 19 miRNAs differentially expressed in HPV-positive OSCC specimens. One of these, miR-550a-3-5p, was down-regulated in HPV-positive OSCC. This down-regulation correlated with higher tumor size and nodal metastasis. Biofunctional investigations revealed that miR-550a-3-5p inhibited tumor growth and progression in nude mice models without altering the in vitro migration, invasion and EMT of HPV-positive OSCC cells. After co-culturing cancer cells with tumor-associated macrophages (TAMs), we found that the effects of miR-550a-3-5p on suppressing migration, invasion and EMT of HPV-positive OSCC cells were dependent on decreasing M2 macrophages polarization. Moreover, we identified that miR-550a-3-5p, down-regulated by E6 oncoprotein, inhibited M2 macrophages polarization by YAP/CCL2 signaling, which in turn abrogating EMT program in HPV-positive OSCC cells. Using YAP inhibitor, verteporfin (VP) in a HPV-positive OSCC model of transgenic mice also showed that tumors were less progressive when compared to those in Vehicle group. In both xenografts and clinical HPV-positive OSCC samples, miR-550a-3-5p levels were inversely associated with YAP, CCL2 expressions and the number of M2 macrophages.Conclusions: E6/miR-550a-3-5p/YAP/CCL2 signaling induces M2 macrophages polarization to enhance EMT and progression, revealing a novel crosstalk between cancer cells and immune cells in HPV-positive OSCC microenvironment.

2020 ◽  
Author(s):  
Mingxin Cao ◽  
Weilong Zhang ◽  
Xianghua Yu ◽  
Jiashun Wu ◽  
Xinwei Qiao ◽  
...  

Abstract Background: Human papillomavirus (HPV)-positive oral squamous cell carcinoma (OSCC) is increasing worldwide with typically higher grade and stage, while better prognosis. microRNAs (miRNAs) has been shown to play a critical role in cancer, however, their role in HPV-positive OSCC progression remains unclear.Methods: miRNA microarray was performed to identify differentially expressed miRNAs. qRT-PCR and FISH were performed to determine the relative expression of miR-550a-3-5p. CCK-8, Flow cytometry, Wound healing, Cell invasion assays and xenograft experiments were conducted to analyze the biological roles of miR-550a-3-5p. Tumor-associated macrophages (TAMs) generation, co-culturing of cancer cells with TAMs, Western blot, Dual-luciferase reporter gene assay, Immunohistochemistry and animal studies were performed to explore the mechanisms underlying the functions of miR-550a-3-5p.Results: We identified 19 miRNAs differentially expressed in HPV-positive OSCC specimens and miR-550a-3-5p was down-regulated. The low expression of miR-550a-3-5p correlated with higher tumor size and nodal metastasis of HPV-positive OSCC patients. Then, we found that miR-550a-3-5p suppressed the migration, invasion and EMT of HPV-positive OSCC cells dependent on decreasing M2 macrophages polarization. Moreover, miR-550a-3-5p, down-regulated by E6 oncoprotein, inhibited M2 macrophages polarization by YAP/CCL2 signaling, which in turn abrogating EMT program in HPV-positive OSCC cells. In addition, in both xenografts and clinical HPV-positive OSCC samples, miR-550a-3-5p levels were inversely associated with YAP, CCL2 expressions and the number of M2 macrophages.Conclusions: E6/miR-550a-3-5p/YAP/CCL2 signaling induces M2 macrophages polarization to enhance EMT and progression, revealing a novel crosstalk between cancer cells and immune cells in HPV-positive OSCC microenvironment.


Author(s):  
Wenfang Cheng ◽  
Xiuling Shi ◽  
Mingqiang Lin ◽  
Qiwei Yao ◽  
Jiayu Ma ◽  
...  

BackgroundAccumulating evidence has suggested that aberrant expression of long non-coding RNAs (lncRNAs) may contribute to cancer progression in association with radioresistance. The current study aimed to identify the potential role of lncRNA MAGI2-AS3 and the underlying mechanism in its regulation of the radio-sensitivity of esophageal cancer cells.Methods and ResultsInitially, we detected high expression of HOXB7 from microarray-based gene expression profiling of esophageal cancer. Then, we identified the interactions among MAGI2-AS3, HOXB7, and EZH2 by dual-luciferase reporter gene assay, RNA pull-down assay, RIP assay and ChIP assay. HOXB7 was highly-expressed, while MAGI2-AS3 was poorly-expressed in esophageal cancer tissues and cells. The effect of MAGI2-AS3 and HOXB7 on esophageal cancer cell proliferation and apoptosis as well as tumorigenicity of radioresistant cells was examined by gain- and loss-of-function experiments. Interestingly, MAGI2-AS3 down-regulated HOXB7 through interaction with EZH2, which promoted cell apoptosis and inhibited proliferation and radio-resistance. Besides, down-regulation of MAGI2-AS3 exerted a promoting effect on these malignant phenotypes.ConclusionTaken together, our results reveal the potential role of MAGI2-AS3 over-expression in controlling esophageal cancer resistance to radiotherapy by down-regulating HOXB7, this providing a candidate biomarker for resistance to radiotherapy.


2020 ◽  
Vol 19 ◽  
pp. 153303382093413 ◽  
Author(s):  
Huiling Zhang ◽  
Ruxin Chen ◽  
Jinyan Shao

Purpose: The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. Methods: MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. Results: MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. Conclusions: MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-172
Author(s):  
Guoning Su ◽  
Zhibing Yan ◽  
Min Deng

AbstractSevoflurane was frequently used as a volatile anesthetic in cancer surgery. However, the potential mechanism of sevoflurane on lung cancer remains largely unclear. In this study, lung cancer cell lines (H446 and H1975) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assessment and colony formation assay were performed to detect the cell viability and proliferation, separately. Also, transwell assay or flow cytometry assay was applied as well to evaluate the invasive ability or apoptosis in lung cancer cells, respectively. Western blot assay was employed to detect the protein levels of β-catenin and Wnt5a. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of prostate cancer-associated transcript 6 (PCAT6) and miR-326 in lung cancer tissues and cells. The target interaction between miR-326 and PCAT6 or Wnt5a was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. Sevoflurane inhibited the abilities on viability, proliferation, invasion, and activation of Wnt/β-catenin signaling, but promoted apoptosis of H446 and H1975 cells in a dose-dependent manner. The expression of PCAT6 was increased in lung cancer tissues and cells, except for that of miR-326. Besides, sevoflurane could lead to expressed limitation of PCAT6 or improvement of miR-326. This process presented a stepwise manner. Up-regulation of PCAT6 restored the suppression of sevoflurane on abilities of proliferation, invasion, rather than apoptosis, and re-activated the Wnt5a/β-catenin signaling in cells. Moreover, the putative binding sites between miR-326 and PCTA6 or Wnt5a were predicted by starBase v2.0 software online. PCAT6 suppressing effects on cells could be reversed by pre-treatment with miR-326 vector. The promotion of Wnt5a inverted effects led from miR-326 or sevoflurane. Our study indicated that sevoflurane inhibited the proliferation, and invasion, but enhanced the apoptosis in lung cancer cells by regulating the lncRNA PCAT6/miR-326/Wnt5a/β-catenin axis.


2021 ◽  
Vol 35 ◽  
pp. 205873842110167
Author(s):  
Zhensen Zhu ◽  
Bo Chen ◽  
Liang Peng ◽  
Songying Gao ◽  
Jingdong Guo ◽  
...  

Activated M2 macrophages are involved in hypertrophic scar (HS) formation via manipulating the differentiation of fibroblasts to myofibroblasts having the proliferative capacity and biological function. However, the function of exosomes derived from M2 macrophages in HS formation is unclear. Thus, this study aims to investigate the role of exosomes derived by M2 in the formation of HS. To understand the effect of exosomes derived from M2 macrophages on formation of HS, M2 macrophages were co-cultured with human dermal fibroblast (HDF) cells. Cell Counting Kit-8 assay was performed to evaluate HDF proliferation. To evaluate the migration and invasion of HDFs, wound-healing and transwell invasion assays were performed, respectively. To investigate the interaction between LINC01605 and miR-493-3p, a dual-luciferase reporter gene assay was adopted; consequently, an interaction between miR-493-3p and AKT1 was detected. Our results demonstrated that exosomes derived from M2 macrophages promoted the proliferation, migration, and invasion of HDFs. Additionally, we found that long noncoding RNA LINC01605, enriched in exosomes derived from M2 macrophages, promoted fibrosis of HDFs and that GW4869, an inhibitor of exosomes, could revert this effect. Mechanistically, LINC01605 promoted fibrosis of HDFs by directly inhibiting the secretion of miR-493-3p, and miR-493-3p down-regulated the expression of AKT1. Exosomes derived from M2 macrophages promote the proliferation and migration of HDFs by transmitting LINC01605, which may activate the AKT signaling pathway by sponging miR-493-3p. Our results provide a novel approach and basis for further investigation of the function of M2 macrophages in HS formation.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jieyun Hong ◽  
Shijun Li ◽  
Xiaoyu Wang ◽  
Chugang Mei ◽  
Linsen Zan

Sirtuins, NAD+-dependent deacylases and ADP-ribosyltransferases, are critical regulators of metabolism involved in many biological processes, and are involved in mediating adaptive responses to the cellular environment. SIRT4 is a mitochondrial sirtuin and has been shown to play a critical role in maintaining insulin secretion and glucose homeostasis. As a regulator of lipid homeostasis, SIRT4 can repress fatty acid oxidation and promote lipid anabolism in nutrient-replete conditions. Using real-time quantitative PCR (qPCR) to explore the molecular mechanisms of transcriptional regulation of bovine SIRT4 during adipocyte differentiation, we found that bovine SIRT4 is expressed at high levels in bovine subcutaneous adipose tissue. SIRT4 knockdown led to decreased expression of adipogenic differentiation marker genes during adipocyte differentiation. The core promoter of bovine SIRT4 was identified in the −402/−60 bp region of the cloned 2-kb fragment containing the 5′-regulatory region. Binding sites were identified in this region for E2F transcription factor-1 (E2F1), CCAAT/enhancer-binding protein β (CEBPβ), homeobox A5 (HOXA5), interferon regulatory factor 4 (IRF4), paired box 4 (PAX4), and cAMP responsive element-binding protein 1 (CREB1) by using Electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. We also found that E2F1, CEBPβ, and HOXA5 transcriptionally activate SIRT4 expression, whereas, IRF4, PAX4, and CREB1 transcriptionally repress SIRT4 expression. We further verified that SIRT4 knockdown could affect the ability of these transcription factors (TFs) to regulate the differentiation of bovine adipocytes. In conclusion, our results shed light on the mechanisms underlying the transcriptional regulation of SIRT4 expression in bovine adipocytes.


2021 ◽  
Vol 11 (12) ◽  
pp. 2478-2483
Author(s):  
Xiang Ji ◽  
Kai-Wen Zhou

Glaucoma is a leading cause of vision loss mainly due to retinal ganglion cells (RGC) loss. MicroRNAs (miRNAs) are highlighted as potential biomarkers in diseases. This study aims to investigate the role of miR-43 and BMSCs in the RGC apoptosis and glaucoma.RGCs were transfected with miR-43 inhibitors and mimics, and then co-cultured with BMSCs. RT-qPCR analysis was conducted to determine miR-43 expression, whilst Western blot, and flow cytometry were carried out to assess the role of miR-43 in apoptosis and inflammation. The interaction between miR-43 and BDNF, a neurotrophic factor, was detected by dual-luciferase reporter gene assay. Overexpression of miR-43 promoted RGC proliferation and decreased apoptosis. Furthermore, miR-43 overexpression diminished the contents of apoptosis- and inflammatory-related factors, and elevated the expression of BDNF. Down-regulation of BDNF exerted similar effect as down-regulation of miR-43, enhancing apoptosis and aggravating inflammation. Importantly, BMSC treatment reversed the in vitro inhibitory effect of si-BDNF on RGC with enhancement of miR-43 expression. Mechanically, miR-43 was indicated to target BDNF in glaucoma. Collectively, miR-43 delivered by BMSCs plays an important role in the inflammatory injury and abnormal apoptosis of RGC by regulating the expression of BDNF. These findings might help development of new treatment for glaucoma and provide a promising biomarker for diagnosis and treatment.


Author(s):  
Bin Deng ◽  
Pu Xu ◽  
Bingyu Zhang ◽  
Qing Luo ◽  
Guanbin Song

Tendon injuries are among the most challenging in orthopedics. During the early tendon repair, new blood vessel formation is necessary. However, excessive angiogenesis also exacerbates scar formation, leading to pain and dysfunction. A significantly worse outcome was associated with higher expression levels of hypoxia-inducible factor-1 alpha (HIF-1α), and its transcriptional targets vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor B (PDGFB), but the underlying molecular mechanisms remain unclear. In this study, lipopolysaccharide (LPS) was used to induce an inflammatory response in tenocytes. LPS increased the tenocytes’ inflammatory factor COX2 expression and activated the HIF-1α/VEGFA/PDGFB pathway. Moreover, the conditioned medium from the tenocytes boosted rat aortic vascular endothelial cell (RAOEC) angiogenesis. Furthermore, Trichostatin A (TSA), an inhibitor of histone deacetylase, was used to treat inflammatory tenocytes. The expression levels of HIF-1α and its transcriptional targets VEGFA and PDGFB decreased, resulting in RAOEC angiogenesis inhibition. Finally, the dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay proved that the HIF-1α/PDGFB pathway played a more critical role in tenocyte angiogenesis than the HIF-1α/VEGFA pathway. TSA could alleviate angiogenesis mainly through epigenetic regulation of the HIF-1α/PDGFB pathway. Taken together, TSA might be a promising anti-angiogenesis drug for abnormal angiogenesis, which is induced by tendon injuries.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
De-jian Chen ◽  
Da-peng Li

Background. It has been reported that there may be a potential link between hernia and dementia. However, the exact mechanisms of their association have not been established. This study is aimed at constructing miRNA-mRNA networks to elucidate on the potential link between dementia and hernia. Methods. Gene expression profiles for dementia, herniation, and skeletal muscle were downloaded from the GEO database after which differentially expressed mRNAs and miRNAs were obtained. In addition, fascia tissue samples were obtained during surgery. A total of 41 patients were recruited in this study, and expression levels of candidate genes were examined using quantitative RT-PCR. Luciferase reporter gene assays were used to identify potential miRNA-mRNA regulatory pathways. Results. Differentially expressed mRNAs and miRNAs were screened. A potential miRNA-mRNA network revealing the crosstalk mechanism between herniation and dementia was identified. Single cell analysis revealed that PI16 was highly enriched in adipose tissues, skeletal muscles, and in the skin. GSEA enrichment analysis showed that PI16 is involved in adipose metabolism, muscle functions, and energy metabolism. In clinical samples, PI16 was found to be upregulated in hernia, while miR-4451 was found to be downregulated. The luciferase reporter gene assay revealed that downregulation of circulating miR-4451 may be responsible for the upregulated PI16 expression in hernia sacs. Conclusions. We constructed an miRNA-mRNA network that shows the potential association between dementia and hernia. We also found that miR-4451 regulates the PI16 expression, which may be a key target and biomarker for hernia pathogenesis and dementia crosstalk.


Author(s):  
Junhe Zhang ◽  
Wenwen Yang ◽  
Yunxi Xiao ◽  
Linlin Shan

Background: Colon cancer is one of the most common types of cancer worldwide. Multiple studies have unveiled the key role of microRNAs (miRNAs) in the development of various types of cancer. However, the mechanism of action of miR-125b in the development and progression of colon cancer remains unknown. Objective: In this study, we explored the association of miR-125b and signal transducer and activator of transcription 3 (STAT3) and its role in the proliferation and apoptosis of SW480 colon cancer cells. Methods: The miR-125b expression in NCM460, SW480, HT29, and HCT8 cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR). SW480 cells were transfected with lentiviruses of GFP–miR–125b and GFP–NC to establish a stable miR-125b overexpression colon cancer cell model and a control model. The targeting relationship between miR-125b and STAT3 was analyzed using bioinformatics and verified by the dual-luciferase reporter gene assay. Cell proliferation and apoptosis were assessed using the Cell Counting Kit-8 assay and TUNEL staining. The expression levels of STAT3, Bcl-2, and Bax were analyzed using Western blot analysis. Results: It was found that the relative mRNA expression of miR-125b was decreased in SW480, HT29, and HCT8 cells compared with that in NCM460 cells (P<0.05). The luciferase reporter gene assay confirmed that miR-125b downregulated the STAT3 gene expression (P<0.05). Overexpression of miR-125b inhibited proliferation and promoted apoptosis in SW480 colon cancer cells and was accompanied by upregulated Bax expression and downregulated Bcl-2 expression (P<0.05). Re-expression of STAT3 promoted cell proliferation and inhibited cell apoptosis, whereas Bcl-2 expression increased, and Bax expression decreased (P<0.05). Conclusion: The miR-125b regulates the expression of Bax and Bcl-2 by downregulating the expression of STAT3, thereby inhibiting proliferation and inducing apoptosis of SW480 colon cancer cells.


Sign in / Sign up

Export Citation Format

Share Document